geqr2p(3) Library Functions Manual geqr2p(3) NAME geqr2p - geqr2p: QR factor, diag( R ) >= 0, level 2 SYNOPSIS Functions subroutine cgeqr2p (m, n, a, lda, tau, work, info) CGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. subroutine dgeqr2p (m, n, a, lda, tau, work, info) DGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. subroutine sgeqr2p (m, n, a, lda, tau, work, info) SGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. subroutine zgeqr2p (m, n, a, lda, tau, work, info) ZGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. Detailed Description Function Documentation subroutine cgeqr2p (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info) CGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. Purpose: CGEQR2P computes a QR factorization of a complex m-by-n matrix A: A = Q * ( R ), ( 0 ) where: Q is a m-by-m orthogonal matrix; R is an upper-triangular n-by-n matrix with nonnegative diagonal entries; 0 is a (m-n)-by-n zero matrix, if m > n. Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n). The diagonal entries of R are real and nonnegative; the elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). See Lapack Working Note 203 for details Definition at line 133 of file cgeqr2p.f. subroutine dgeqr2p (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info) DGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. Purpose: DGEQR2P computes a QR factorization of a real m-by-n matrix A: A = Q * ( R ), ( 0 ) where: Q is a m-by-m orthogonal matrix; R is an upper-triangular n-by-n matrix with nonnegative diagonal entries; 0 is a (m-n)-by-n zero matrix, if m > n. Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n). The diagonal entries of R are nonnegative; the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is DOUBLE PRECISION array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). See Lapack Working Note 203 for details Definition at line 133 of file dgeqr2p.f. subroutine sgeqr2p (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info) SGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. Purpose: SGEQR2P computes a QR factorization of a real m-by-n matrix A: A = Q * ( R ), ( 0 ) where: Q is a m-by-m orthogonal matrix; R is an upper-triangular n-by-n matrix with nonnegative diagonal entries; 0 is a (m-n)-by-n zero matrix, if m > n. Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n). The diagonal entries of R are nonnegative; the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). See Lapack Working Note 203 for details Definition at line 133 of file sgeqr2p.f. subroutine zgeqr2p (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info) ZGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. Purpose: ZGEQR2P computes a QR factorization of a complex m-by-n matrix A: A = Q * ( R ), ( 0 ) where: Q is a m-by-m orthogonal matrix; R is an upper-triangular n-by-n matrix with nonnegative diagonal entries; 0 is a (m-n)-by-n zero matrix, if m > n. Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n). The diagonal entries of R are real and nonnegative; the elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX*16 array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). See Lapack Working Note 203 for details Definition at line 133 of file zgeqr2p.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 geqr2p(3)