gelqf(3) Library Functions Manual gelqf(3)

gelqf - gelqf: LQ factor


subroutine cgelqf (m, n, a, lda, tau, work, lwork, info)
CGELQF subroutine dgelqf (m, n, a, lda, tau, work, lwork, info)
DGELQF subroutine sgelqf (m, n, a, lda, tau, work, lwork, info)
SGELQF subroutine zgelqf (m, n, a, lda, tau, work, lwork, info)
ZGELQF

CGELQF

Purpose:

!>
!> CGELQF computes an LQ factorization of a complex M-by-N matrix A:
!>
!>    A = ( L 0 ) *  Q
!>
!> where:
!>
!>    Q is a N-by-N orthogonal matrix;
!>    L is a lower-triangular M-by-M matrix;
!>    0 is a M-by-(N-M) zero matrix, if M < N.
!>
!> 

Parameters

M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
!>          lower triangular if m <= n); the elements above the diagonal,
!>          with the array TAU, represent the unitary matrix Q as a
!>          product of elementary reflectors (see Further Details).
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

TAU

!>          TAU is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 

WORK

!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise.
!>          For optimum performance LWORK >= M*NB, where NB is the
!>          optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
!>  A(i,i+1:n), and tau in TAU(i).
!> 

Definition at line 143 of file cgelqf.f.

DGELQF

Purpose:

!>
!> DGELQF computes an LQ factorization of a real M-by-N matrix A:
!>
!>    A = ( L 0 ) *  Q
!>
!> where:
!>
!>    Q is a N-by-N orthogonal matrix;
!>    L is a lower-triangular M-by-M matrix;
!>    0 is a M-by-(N-M) zero matrix, if M < N.
!>
!> 

Parameters

M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
!>          lower triangular if m <= n); the elements above the diagonal,
!>          with the array TAU, represent the orthogonal matrix Q as a
!>          product of elementary reflectors (see Further Details).
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

TAU

!>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise.
!>          For optimum performance LWORK >= M*NB, where NB is the
!>          optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(k) . . . H(2) H(1), where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
!>  and tau in TAU(i).
!> 

Definition at line 143 of file dgelqf.f.

SGELQF

Purpose:

!>
!> SGELQF computes an LQ factorization of a real M-by-N matrix A:
!>
!>    A = ( L 0 ) *  Q
!>
!> where:
!>
!>    Q is a N-by-N orthogonal matrix;
!>    L is a lower-triangular M-by-M matrix;
!>    0 is a M-by-(N-M) zero matrix, if M < N.
!>
!> 

Parameters

M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
!>          lower triangular if m <= n); the elements above the diagonal,
!>          with the array TAU, represent the orthogonal matrix Q as a
!>          product of elementary reflectors (see Further Details).
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

TAU

!>          TAU is REAL array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 

WORK

!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise.
!>          For optimum performance LWORK >= M*NB, where NB is the
!>          optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(k) . . . H(2) H(1), where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
!>  and tau in TAU(i).
!> 

Definition at line 143 of file sgelqf.f.

ZGELQF

Purpose:

!>
!> ZGELQF computes an LQ factorization of a complex M-by-N matrix A:
!>
!>    A = ( L 0 ) *  Q
!>
!> where:
!>
!>    Q is a N-by-N orthogonal matrix;
!>    L is a lower-triangular M-by-M matrix;
!>    0 is a M-by-(N-M) zero matrix, if M < N.
!>
!> 

Parameters

M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
!>          lower triangular if m <= n); the elements above the diagonal,
!>          with the array TAU, represent the unitary matrix Q as a
!>          product of elementary reflectors (see Further Details).
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

TAU

!>          TAU is COMPLEX*16 array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise.
!>          For optimum performance LWORK >= M*NB, where NB is the
!>          optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
!>  A(i,i+1:n), and tau in TAU(i).
!> 

Definition at line 143 of file zgelqf.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK