.TH "gebak" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME gebak \- gebak: back-transform eigvec .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcgebak\fP (job, side, n, ilo, ihi, scale, m, v, ldv, info)" .br .RI "\fBCGEBAK\fP " .ti -1c .RI "subroutine \fBdgebak\fP (job, side, n, ilo, ihi, scale, m, v, ldv, info)" .br .RI "\fBDGEBAK\fP " .ti -1c .RI "subroutine \fBsgebak\fP (job, side, n, ilo, ihi, scale, m, v, ldv, info)" .br .RI "\fBSGEBAK\fP " .ti -1c .RI "subroutine \fBzgebak\fP (job, side, n, ilo, ihi, scale, m, v, ldv, info)" .br .RI "\fBZGEBAK\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cgebak (character job, character side, integer n, integer ilo, integer ihi, real, dimension( * ) scale, integer m, complex, dimension( ldv, * ) v, integer ldv, integer info)" .PP \fBCGEBAK\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CGEBAK forms the right or left eigenvectors of a complex general !> matrix by backward transformation on the computed eigenvectors of the !> balanced matrix output by CGEBAL\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOB\fP .PP .nf !> JOB is CHARACTER*1 !> Specifies the type of backward transformation required: !> = 'N': do nothing, return immediately; !> = 'P': do backward transformation for permutation only; !> = 'S': do backward transformation for scaling only; !> = 'B': do backward transformations for both permutation and !> scaling\&. !> JOB must be the same as the argument JOB supplied to CGEBAL\&. !> .fi .PP .br \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> = 'R': V contains right eigenvectors; !> = 'L': V contains left eigenvectors\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of rows of the matrix V\&. N >= 0\&. !> .fi .PP .br \fIILO\fP .PP .nf !> ILO is INTEGER !> .fi .PP .br \fIIHI\fP .PP .nf !> IHI is INTEGER !> The integers ILO and IHI determined by CGEBAL\&. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is REAL array, dimension (N) !> Details of the permutation and scaling factors, as returned !> by CGEBAL\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of columns of the matrix V\&. M >= 0\&. !> .fi .PP .br \fIV\fP .PP .nf !> V is COMPLEX array, dimension (LDV,M) !> On entry, the matrix of right or left eigenvectors to be !> transformed, as returned by CHSEIN or CTREVC\&. !> On exit, V is overwritten by the transformed eigenvectors\&. !> .fi .PP .br \fILDV\fP .PP .nf !> LDV is INTEGER !> The leading dimension of the array V\&. LDV >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB129\fP of file \fBcgebak\&.f\fP\&. .SS "subroutine dgebak (character job, character side, integer n, integer ilo, integer ihi, double precision, dimension( * ) scale, integer m, double precision, dimension( ldv, * ) v, integer ldv, integer info)" .PP \fBDGEBAK\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DGEBAK forms the right or left eigenvectors of a real general matrix !> by backward transformation on the computed eigenvectors of the !> balanced matrix output by DGEBAL\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOB\fP .PP .nf !> JOB is CHARACTER*1 !> Specifies the type of backward transformation required: !> = 'N': do nothing, return immediately; !> = 'P': do backward transformation for permutation only; !> = 'S': do backward transformation for scaling only; !> = 'B': do backward transformations for both permutation and !> scaling\&. !> JOB must be the same as the argument JOB supplied to DGEBAL\&. !> .fi .PP .br \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> = 'R': V contains right eigenvectors; !> = 'L': V contains left eigenvectors\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of rows of the matrix V\&. N >= 0\&. !> .fi .PP .br \fIILO\fP .PP .nf !> ILO is INTEGER !> .fi .PP .br \fIIHI\fP .PP .nf !> IHI is INTEGER !> The integers ILO and IHI determined by DGEBAL\&. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is DOUBLE PRECISION array, dimension (N) !> Details of the permutation and scaling factors, as returned !> by DGEBAL\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of columns of the matrix V\&. M >= 0\&. !> .fi .PP .br \fIV\fP .PP .nf !> V is DOUBLE PRECISION array, dimension (LDV,M) !> On entry, the matrix of right or left eigenvectors to be !> transformed, as returned by DHSEIN or DTREVC\&. !> On exit, V is overwritten by the transformed eigenvectors\&. !> .fi .PP .br \fILDV\fP .PP .nf !> LDV is INTEGER !> The leading dimension of the array V\&. LDV >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB128\fP of file \fBdgebak\&.f\fP\&. .SS "subroutine sgebak (character job, character side, integer n, integer ilo, integer ihi, real, dimension( * ) scale, integer m, real, dimension( ldv, * ) v, integer ldv, integer info)" .PP \fBSGEBAK\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> SGEBAK forms the right or left eigenvectors of a real general matrix !> by backward transformation on the computed eigenvectors of the !> balanced matrix output by SGEBAL\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOB\fP .PP .nf !> JOB is CHARACTER*1 !> Specifies the type of backward transformation required: !> = 'N': do nothing, return immediately; !> = 'P': do backward transformation for permutation only; !> = 'S': do backward transformation for scaling only; !> = 'B': do backward transformations for both permutation and !> scaling\&. !> JOB must be the same as the argument JOB supplied to SGEBAL\&. !> .fi .PP .br \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> = 'R': V contains right eigenvectors; !> = 'L': V contains left eigenvectors\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of rows of the matrix V\&. N >= 0\&. !> .fi .PP .br \fIILO\fP .PP .nf !> ILO is INTEGER !> .fi .PP .br \fIIHI\fP .PP .nf !> IHI is INTEGER !> The integers ILO and IHI determined by SGEBAL\&. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is REAL array, dimension (N) !> Details of the permutation and scaling factors, as returned !> by SGEBAL\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of columns of the matrix V\&. M >= 0\&. !> .fi .PP .br \fIV\fP .PP .nf !> V is REAL array, dimension (LDV,M) !> On entry, the matrix of right or left eigenvectors to be !> transformed, as returned by SHSEIN or STREVC\&. !> On exit, V is overwritten by the transformed eigenvectors\&. !> .fi .PP .br \fILDV\fP .PP .nf !> LDV is INTEGER !> The leading dimension of the array V\&. LDV >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB128\fP of file \fBsgebak\&.f\fP\&. .SS "subroutine zgebak (character job, character side, integer n, integer ilo, integer ihi, double precision, dimension( * ) scale, integer m, complex*16, dimension( ldv, * ) v, integer ldv, integer info)" .PP \fBZGEBAK\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGEBAK forms the right or left eigenvectors of a complex general !> matrix by backward transformation on the computed eigenvectors of the !> balanced matrix output by ZGEBAL\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOB\fP .PP .nf !> JOB is CHARACTER*1 !> Specifies the type of backward transformation required: !> = 'N': do nothing, return immediately; !> = 'P': do backward transformation for permutation only; !> = 'S': do backward transformation for scaling only; !> = 'B': do backward transformations for both permutation and !> scaling\&. !> JOB must be the same as the argument JOB supplied to ZGEBAL\&. !> .fi .PP .br \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> = 'R': V contains right eigenvectors; !> = 'L': V contains left eigenvectors\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of rows of the matrix V\&. N >= 0\&. !> .fi .PP .br \fIILO\fP .PP .nf !> ILO is INTEGER !> .fi .PP .br \fIIHI\fP .PP .nf !> IHI is INTEGER !> The integers ILO and IHI determined by ZGEBAL\&. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. !> .fi .PP .br \fISCALE\fP .PP .nf !> SCALE is DOUBLE PRECISION array, dimension (N) !> Details of the permutation and scaling factors, as returned !> by ZGEBAL\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of columns of the matrix V\&. M >= 0\&. !> .fi .PP .br \fIV\fP .PP .nf !> V is COMPLEX*16 array, dimension (LDV,M) !> On entry, the matrix of right or left eigenvectors to be !> transformed, as returned by ZHSEIN or ZTREVC\&. !> On exit, V is overwritten by the transformed eigenvectors\&. !> .fi .PP .br \fILDV\fP .PP .nf !> LDV is INTEGER !> The leading dimension of the array V\&. LDV >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB129\fP of file \fBzgebak\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.