RAWSHARK(1) | RAWSHARK(1) |
NAME
rawshark - Dump and analyze raw pcap data
SYNOPSIS
rawshark [ -d <encap:linktype>|<proto:protoname> ] [ -F <field to display> ] [ -l ] [ -m <bytes> ] [ -o <preference setting> ] ... [ -p ] [ -r <pipe>|- ] [ -R <read (display) filter> ] [ -s ] [ -S <field format> ] [ options ]
rawshark -h|--help
rawshark -v|--version
DESCRIPTION
Rawshark reads a stream of packets from a file or pipe, and prints a line describing its output, followed by a set of matching fields for each packet on stdout.
INPUT
Unlike TShark, Rawshark makes no assumptions about encapsulation or input. The -d and -r flags must be specified in order for it to run. One or more -F flags should be specified in order for the output to be useful. The other flags listed above follow the same conventions as Wireshark and TShark.
Rawshark expects input records with the following format by default. This matches the format of the packet header and packet data in a pcap-formatted file on disk.
struct rawshark_rec_s { uint32_t ts_sec; /* Time stamp (seconds) */ uint32_t ts_usec; /* Time stamp (microseconds) */ uint32_t caplen; /* Length of the packet buffer */ uint32_t len; /* "On the wire" length of the packet */ uint8_t data[caplen]; /* Packet data */ };
If -p is supplied rawshark expects the following format. This matches the struct pcap_pkthdr structure and packet data used in libpcap, Npcap, or WinPcap. This structure’s format is platform-dependent; the size of the tv_sec field in the struct timeval structure could be 32 bits or 64 bits. For rawshark to work, the layout of the structure in the input must match the layout of the structure in rawshark. Note that this format will probably be the same as the previous format if rawshark is a 32-bit program, but will not necessarily be the same if rawshark is a 64-bit program.
struct rawshark_rec_s { struct timeval ts; /* Time stamp */ uint32_t caplen; /* Length of the packet buffer */ uint32_t len; /* "On the wire" length of the packet */ uint8_t data[caplen]; /* Packet data */ };
In either case, the endianness (byte ordering) of each integer must match the system on which rawshark is running.
OUTPUT
If one or more fields are specified via the -F flag, Rawshark prints the number, field type, and display format for each field on the first line as "packet number" 0. For each record, the packet number, matching fields, and a "1" or "0" are printed to indicate if the field matched any supplied display filter. A "-" is used to signal the end of a field description and at the end of each packet line. For example, the flags -F ip.src -F dns.qry.type might generate the following output:
0 FT_IPv4 BASE_NONE - 1 FT_UINT16 BASE_HEX - 1 1="1" 0="192.168.77.10" 1 - 2 1="1" 0="192.168.77.250" 1 - 3 0="192.168.77.10" 1 - 4 0="74.125.19.104" 1 -
Note that packets 1 and 2 are DNS queries, and 3 and 4 are not. Adding -R "not dns" still prints each line, but there’s an indication that packets 1 and 2 didn’t pass the filter:
0 FT_IPv4 BASE_NONE - 1 FT_UINT16 BASE_HEX - 1 1="1" 0="192.168.77.10" 0 - 2 1="1" 0="192.168.77.250" 0 - 3 0="192.168.77.10" 1 - 4 0="74.125.19.104" 1 -
Also note that the output may be in any order, and that multiple matching fields might be displayed.
OPTIONS
-d <encapsulation>
Specify how the packet data should be dissected. The encapsulation is of the form type:value, where type is one of:
encap:name Packet data should be dissected using the libpcap/Npcap/WinPcap data link type (DLT) name, e.g. encap:EN10MB for Ethernet. Names are converted using pcap_datalink_name_to_val(). A complete list of DLTs can be found at https://www.tcpdump.org/linktypes.html.
encap:number Packet data should be dissected using the libpcap/Npcap/WinPcap LINKTYPE_ number, e.g. encap:105 for raw IEEE 802.11 or encap:101 for raw IP.
proto:protocol Packet data should be passed to the specified Wireshark protocol dissector, e.g. proto:http for HTTP data.
-F <field to display>
Add the matching field to the output. Fields are any valid display filter field. More than one -F flag may be specified, and each field can match multiple times in a given packet. A single field may be specified per -F flag. If you want to apply a display filter, use the -R flag.
-h|--help
-l
Flush the standard output after the information for each packet is printed. (This is not, strictly speaking, line-buffered if -V was specified; however, it is the same as line-buffered if -V wasn’t specified, as only one line is printed for each packet, and, as -l is normally used when piping a live capture to a program or script, so that output for a packet shows up as soon as the packet is seen and dissected, it should work just as well as true line-buffering. We do this as a workaround for a deficiency in the Microsoft Visual C++ C library.)
This may be useful when piping the output of TShark to another program, as it means that the program to which the output is piped will see the dissected data for a packet as soon as TShark sees the packet and generates that output, rather than seeing it only when the standard output buffer containing that data fills up.
-m <memory limit bytes>
-o <preference>:<value>
Set a preference value, overriding the default value and any value read from a preference file. The argument to the option is a string of the form prefname:value, where prefname is the name of the preference (which is the same name that would appear in the preference file), and value is the value to which it should be set.
-p
Assume that packet data is preceded by a pcap_pkthdr struct as defined in pcap.h. On some systems the size of the timestamp data will be different from the data written to disk. On other systems they are identical and this flag has no effect.
-r <pipe>|-
Read packet data from input source. It can be either the name of a FIFO (named pipe) or ``-'' to read data from the standard input, and must have the record format specified above.
If you are sending data to rawshark from a parent process on Windows you should not close rawshark’s standard input handle prematurely, otherwise the C runtime might trigger an exception.
-R|--read-filter <read (display) filter>
Cause the specified filter (which uses the syntax of read/display filters, rather than that of capture filters) to be applied before printing the output. Read filters and display filters are synonymous in rawshark.
-s
-S
Use the specified format string to print each field. The following formats are supported:
%D Field name or description, e.g. "Type" for dns.qry.type
%N Base 10 numeric value of the field.
%S String value of the field.
For something similar to Wireshark’s standard display ("Type: A (1)") you could use %D: %S (%N).
-v|--version
-Y|--display-filter <read (display) filter>
Cause the specified filter (which uses the syntax of read/display filters, rather than that of capture filters) to be applied before printing the output. Read filters and display filters are synonymous in rawshark.
DISSECTION OPTIONS
--disable-all-protocols
--disable-protocol <proto_name>[,<proto_name>,...]
--disable-heuristic <short_name>
--enable-protocol <proto_name>[,<proto_name>,...]
Enable dissection of proto_name. Use a proto_name of ALL to override your chosen profile’s default disabled protocol list and temporarily enable all protocols which are enabled by default.
If a protocol is implicated in both --disable-protocol and --enable-protocol, the protocol is enabled. This allows you to temporarily disable all protocols but a list of exceptions. Example: --disable-protocol ALL --enable-protocol eth,ip
--enable-heuristic <short_name>
-K <keytab>
Load kerberos crypto keys from the specified keytab file. This option can be used multiple times to load keys from several files.
Example: -K krb5.keytab
-n
-N <name resolving flags>
Turn on name resolving only for particular types of addresses and port numbers, with name resolving for other types of addresses and port numbers turned off. This option (along with -n) can be specified multiple times; the last value given overrides earlier ones. This option and -n override the options from the preferences, including preferences set via the -o option. If both -N and -n options are not present, the values from the preferences are used, which default to -N dmN.
The argument is a string that may contain the letters:
d to enable resolution from captured DNS packets
g to enable IP address geolocation information lookup from configured MaxMind databases
m to enable MAC address resolution
n to enable network address resolution
N to enable using external resolvers (e.g., DNS) for network address resolution; no effect without n also enabled.
s to enable address resolution using SNI information found in captured handshake packets
t to enable transport-layer port number resolution
v to enable VLAN IDs to names resolution
--only-protocols <protocols>
-t (a|ad|adoy|d|dd|e|r|u|ud|udoy)[.[N]]|.[N]
Set the format of the packet timestamp displayed in the default time column. The format can be one of:
a absolute: The absolute time, as local time in your time zone, is the actual time the packet was captured, with no date displayed
ad absolute with date: The absolute date, displayed as YYYY-MM-DD, and time, as local time in your time zone, is the actual time and date the packet was captured
adoy absolute with date using day of year: The absolute date, displayed as YYYY/DOY, and time, as local time in your time zone, is the actual time and date the packet was captured
d delta: The delta time is the time since the previous packet was captured
dd delta_displayed: The delta_displayed time is the time since the previous displayed packet was captured
e epoch: The time in seconds since epoch (Jan 1, 1970 00:00:00)
r relative: The relative time is the time elapsed between the first packet and the current packet
u UTC: The absolute time, as UTC, is the actual time the packet was captured, with no date displayed
ud UTC with date: The absolute date, displayed as YYYY-MM-DD, and time, as UTC, is the actual time and date the packet was captured
udoy UTC with date using day of year: The absolute date, displayed as YYYY/DOY, and time, as UTC, is the actual time and date the packet was captured
.[N] Set the precision: N is the number of decimals (0 through 9). If using "." without N, automatically determine precision from trace.
The default format is relative with precision based on capture format.
-u <s|hms>
Specifies how packet timestamp formats in -t which are relative times (i.e. relative, delta, and delta_displayed) are displayed. Valid choices are:
s for seconds
hms for hours, minutes, and seconds
The default format is seconds.
DIAGNOSTIC OPTIONS
--log-level <level>
--log-fatal <level>
--log-domains <list>
--log-debug <list>
--log-noisy <list>
--log-fatal-domains <list>
--log-file <path>
READ FILTER SYNTAX
For a complete table of protocol and protocol fields that are filterable in Rawshark see the wireshark-filter(4) manual page.
FILES
These files contain various Wireshark configuration settings.
Preferences
The preferences files contain global (system-wide) and personal preference settings. If the system-wide preference file exists, it is read first, overriding the default settings. If the personal preferences file exists, it is read next, overriding any previous values. Note: If the command line flag -o is used (possibly more than once), it will in turn override values from the preferences files.
The preferences settings are in the form prefname:value, one per line, where prefname is the name of the preference and value is the value to which it should be set; white space is allowed between : and value. A preference setting can be continued on subsequent lines by indenting the continuation lines with white space. A # character starts a comment that runs to the end of the line:
# Vertical scrollbars should be on right side? # TRUE or FALSE (case-insensitive). gui.scrollbar_on_right: TRUE
The global preferences file is looked for in the wireshark directory under the share subdirectory of the main installation directory. On macOS, this would typically be /Application/Wireshark.app/Contents/Resources/share; on other UNIX-compatible systems, such as Linux, \*BSD, Solaris, and AIX, this would typically be /usr/share/wireshark/preferences for system-installed packages and /usr/local/share/wireshark/preferences for locally-installed packages; on Windows, this would typically be C:\Program Files\Wireshark\preferences.
On UNIX-compatible systems, the personal preferences file is looked for in $XDG_CONFIG_HOME/wireshark/preferences, (or, if $XDG_CONFIG_HOME/wireshark does not exist while $HOME/.wireshark does exist, $HOME/.wireshark/preferences); this is typically $HOME/.config/wireshark/preferences. On Windows, the personal preferences file is looked for in %APPDATA%\Wireshark\preferences (or, if %APPDATA% isn’t defined, %USERPROFILE%\Application Data\Wireshark\preferences).
Disabled (Enabled) Protocols
The disabled_protos files contain system-wide and personal lists of protocols that have been disabled, so that their dissectors are never called. The files contain protocol names, one per line, where the protocol name is the same name that would be used in a display filter for the protocol:
http tcp # a comment
If a protocol is listed in the global disabled_protos file it cannot be enabled by the user.
The global disabled_protos file uses the same directory as the global preferences file.
The personal disabled_protos file uses the same directory as the personal preferences file.
The disabled_protos files list only protocols that are enabled by default but have been disabled; protocols that are disabled by default (such as some postdissectors) are not listed. There are analogous enabled_protos files for protocols that are disabled by default but have been enabled.
Heuristic Dissectors
The heuristic_protos files contain system-wide and personal lists of heuristic dissectors and indicate whether they are enabled or disabled. The files contain heuristic dissector unique short names, one per line, followed by a comma and 0 for disabled and 1 for enabled:
quic,1 rtcp_stun,1 rtcp_udp,1 rtp_stun,0 rtp_udp,0 tls_tcp,1
The global heuristic_protos file uses the same directory as the global preferences file.
The personal heuristic_protos file uses the same directory as the personal preferences file.
Name Resolution (hosts)
Entries in hosts files in the global and personal preferences directory are used to resolve IPv4 and IPv6 addresses before any other attempts are made to resolve them. The file has the standard hosts file syntax; each line contains one IP address and name, separated by whitespace. The personal hosts file, if present, overrides the one in the global directory.
Capture filter name resolution is handled by libpcap on UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, and Npcap or WinPcap on Windows. As such the Wireshark personal hosts file will not be consulted for capture filter name resolution.
Name Resolution (subnets)
If an IPv4 address cannot be translated via name resolution (no exact match is found) then a partial match is attempted via the subnets file. Both the global subnets file and personal subnets files are used if they exist.
Each line of this file consists of an IPv4 address, a subnet mask length separated only by a / and a name separated by whitespace. While the address must be a full IPv4 address, any values beyond the mask length are subsequently ignored.
An example is:
# Comments must be prepended by the # sign! 192.168.0.0/24 ws_test_network
A partially matched name will be printed as "subnet-name.remaining-address". For example, "192.168.0.1" under the subnet above would be printed as "ws_test_network.1"; if the mask length above had been 16 rather than 24, the printed address would be "ws_test_network.0.1".
Name Resolution (ethers)
The ethers files are consulted to correlate 6-byte hardware addresses to names. First the personal ethers file is tried and if an address is not found there the global ethers file is tried next.
Each line contains one hardware address and name, separated by whitespace. The digits of the hardware address are separated by colons (:), dashes (-) or periods (.). The same separator character must be used consistently in an address. The following three lines are valid lines of an ethers file:
ff:ff:ff:ff:ff:ff Broadcast c0-00-ff-ff-ff-ff TR_broadcast 00.00.00.00.00.00 Zero_broadcast
The global ethers file is looked for in the /etc directory on UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, and in the main installation directory (for example, C:\Program Files\Wireshark) on Windows systems.
The personal ethers file is looked for in the same directory as the personal preferences file.
Capture filter name resolution is handled by libpcap on UNIX-compatible systems and Npcap or WinPcap on Windows. As such the Wireshark personal ethers file will not be consulted for capture filter name resolution.
Name Resolution (manuf)
The manuf file is used to match the 3-byte vendor portion of a 6-byte hardware address with the manufacturer’s name; it can also contain well-known MAC addresses and address ranges specified with a netmask. The format of the file is similar the ethers files, except that entries such as:
00:00:0C Cisco Cisco Systems, Inc
can be provided, with the 3-byte OUI and both an abbreviated and long name for a vendor, and entries such as:
00-00-0C-07-AC/40 All-HSRP-routers
can be specified, with a MAC address and a mask indicating how many bits of the address must match. The above entry, for example, has 40 significant bits, or 5 bytes, and would match addresses from 00-00-0C-07-AC-00 through 00-00-0C-07-AC-FF. The mask need not be a multiple of 8.
A global manuf file is looked for in the same directory as the global preferences file, and a personal manuf file is looked for in the same directory as the personal preferences file.
In earlier versions of Wireshark, official information from the IEEE Registration Authority was distributed in this format as the global manuf file. This information is now compiled in to speed program startup, but the internal information can be written out in this format with tshark -G manuf.
In addition to the manuf file, another file with the same format, wka, is looked for in the global directory. This file is distributed with Wireshark, and contains data about well-known MAC adddresses and address ranges assembled from various non IEEE but respected sources.
Name Resolution (services)
The services file is used to translate port numbers into names. Both the global services file and personal services files are used if they exist.
The file has the standard services file syntax; each line contains one (service) name and one transport identifier separated by white space. The transport identifier includes one port number and one transport protocol name (typically tcp, udp, or sctp) separated by a /.
An example is:
mydns 5045/udp # My own Domain Name Server mydns 5045/tcp # My own Domain Name Server
In earlier versions of Wireshark, official information from the IANA Registry was distributed in this format as the global services file. This information is now compiled in to speed program startup, but the internal information can be written out in this format with tshark -G services.
Name Resolution (ipxnets)
The ipxnets files are used to correlate 4-byte IPX network numbers to names. First the global ipxnets file is tried and if that address is not found there the personal one is tried next.
The format is the same as the ethers file, except that each address is four bytes instead of six. Additionally, the address can be represented as a single hexadecimal number, as is more common in the IPX world, rather than four hex octets. For example, these four lines are valid lines of an ipxnets file:
C0.A8.2C.00 HR c0-a8-1c-00 CEO 00:00:BE:EF IT_Server1 110f FileServer3
The global ipxnets file is looked for in the /etc directory on UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, and in the main installation directory (for example, C:\Program Files\Wireshark) on Windows systems.
The personal ipxnets file is looked for in the same directory as the personal preferences file.
Name Resolution (ss7pcs)
The ss7pcs file is used to translate SS7 point codes to names. It is read from the personal configuration directory.
Each line in this file consists of one network indicator followed by a dash followed by a point code in decimal and a node name separated by whitespace. An example is:
2-1234 MyPointCode1
Name Resolution (vlans)
The vlans file is used to translate VLAN tag IDs into names. It is read from the personal configuration directory.
Each line in this file consists of one VLAN tag ID separated by whitespace from a name. An example is:
123 Server-Lan 2049 HR-Client-LAN
Color Filters (Coloring Rules)
The colorfilters files contain system-wide and personal color filters. Each line contains one filter, starting with the string displayed in the dialog box, followed by the corresponding display filter. Then the background and foreground colors are appended:
# a comment @tcp@tcp@[59345,58980,65534][0,0,0] @udp@udp@[28834,57427,65533][0,0,0]
The global colorfilters file uses the same directory as the global preferences file.
The personal colorfilters file uses the same directory as the personal preferences file. It is written through the View:Coloring Rules dialog.
If the global colorfilters file exists, it is used only if the personal colorfilters file does not exist; global and personal color filters are not merged.
Plugins
Wireshark looks for plugins in both a personal plugin folder and a global plugin folder.
On UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, the global plugin directory is lib/wireshark/plugins/ (on some systems substitute lib64 for lib) under the main installation directory (for example, /usr/local/lib/wireshark/plugins/). The personal plugin directory is $HOME/.local/lib/wireshark/plugins.
On macOS, if Wireshark is installed as an application bundle, the global plugin folder is instead %APPDIR%/Contents/PlugIns/wireshark.
On Windows, the global plugin folder is plugins/ under the main installation directory (for example, C:\Program Files\Wireshark\plugins\). The personal plugin folder is %APPDATA%\Wireshark\plugins (or, if %APPDATA% isn’t defined, %USERPROFILE%\Application Data\Wireshark\plugins).
Lua plugins are stored in the plugin folders; compiled plugins are stored in subfolders of the plugin folders, with the subfolder name being the Wireshark minor version number (X.Y). There is another hierarchical level for each Wireshark plugin type (libwireshark, libwiretap and codecs). For example, the location for a libwireshark plugin foo.so (foo.dll on Windows) would be PLUGINDIR/X.Y/epan (libwireshark used to be called libepan; the other folder names are codecs and wiretap).
Note
On UNIX-compatible systems, Lua plugins (but not binary plugins)
may also
be placed in $XDG_CONFIG_HOME/wireshark/plugins, (or, if
$XDG_CONFIG_HOME/wireshark does not exist while
$HOME/.wireshark does exist, $HOME/.wireshark/plugins.)
Note that a dissector plugin module may support more than one protocol; there is not necessarily a one-to-one correspondence between dissector plugin modules and protocols. Protocols supported by a dissector plugin module are enabled and disabled in the same way as protocols built into Wireshark.
ENVIRONMENT VARIABLES
WIRESHARK_CONFIG_DIR
This environment variable overrides the location of personal configuration files. On UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, it defaults to $XDG_CONFIG_HOME/wireshark (or, if that directory doesn’t exist but $HOME/.wireshark does exist, $HOME/.wireshark); this is typically $HOME/.config/wireshark. On Windows, it defaults to %APPDATA%\Wireshark (or, if %APPDATA% isn’t defined, %USERPROFILE%\Application Data\Wireshark). Available since Wireshark 3.0.
WIRESHARK_DEBUG_WMEM_OVERRIDE
Setting this environment variable forces the wmem framework to use the specified allocator backend for all allocations, regardless of which backend is normally specified by the code. This is mainly useful to developers when testing or debugging. See README.wmem in the source distribution for details.
WIRESHARK_RUN_FROM_BUILD_DIRECTORY
This environment variable causes the plugins and other data files to be loaded from the build directory (where the program was compiled) rather than from the standard locations. It has no effect when the program in question is running with root (or setuid) permissions on UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX.
WIRESHARK_DATA_DIR
This environment variable causes the various data files to be loaded from a directory other than the standard locations. It has no effect when the program in question is running with root (or setuid) permissions on UNIX-compatible systems.
ERF_RECORDS_TO_CHECK
This environment variable controls the number of ERF records checked when deciding if a file really is in the ERF format. Setting this environment variable a number higher than the default (20) would make false positives less likely.
IPFIX_RECORDS_TO_CHECK
This environment variable controls the number of IPFIX records checked when deciding if a file really is in the IPFIX format. Setting this environment variable a number higher than the default (20) would make false positives less likely.
WIRESHARK_ABORT_ON_DISSECTOR_BUG
If this environment variable is set, Rawshark will call abort(3) when a dissector bug is encountered. abort(3) will cause the program to exit abnormally; if you are running Rawshark in a debugger, it should halt in the debugger and allow inspection of the process, and, if you are not running it in a debugger, it will, on some OSes, assuming your environment is configured correctly, generate a core dump file. This can be useful to developers attempting to troubleshoot a problem with a protocol dissector.
WIRESHARK_ABORT_ON_TOO_MANY_ITEMS
If this environment variable is set, Rawshark will call abort(3) if a dissector tries to add too many items to a tree (generally this is an indication of the dissector not breaking out of a loop soon enough). abort(3) will cause the program to exit abnormally; if you are running Rawshark in a debugger, it should halt in the debugger and allow inspection of the process, and, if you are not running it in a debugger, it will, on some OSes, assuming your environment is configured correctly, generate a core dump file. This can be useful to developers attempting to troubleshoot a problem with a protocol dissector.
SEE ALSO
wireshark-filter(4), wireshark(1), tshark(1), editcap(1), pcap(3), dumpcap(1), text2pcap(1), pcap-filter(7) or tcpdump(8)
NOTES
This is the manual page for Rawshark 4.4.1. Rawshark is part of the Wireshark distribution. The latest version of Wireshark can be found at https://www.wireshark.org.
HTML versions of the Wireshark project man pages are available at https://www.wireshark.org/docs/man-pages.
AUTHORS
Rawshark uses the same packet dissection code that Wireshark does, as well as using many other modules from Wireshark; see the list of authors in the Wireshark man page for a list of authors of that code.
2024-10-13 |