Stdlib.List(3) | OCaml library | Stdlib.List(3) |

# NAME

Stdlib.List - no description

# Module

Module Stdlib.List

# Documentation

Module **List**

: **(module Stdlib__List)**

*type* **'a** *t* = **'a list** =

| []

| (::) **of** **'a * 'a list**

An alias for the type of lists.

*val length* : **'a list -> int**

Return the length (number of elements) of the given list.

*val compare_lengths* : **'a list -> 'b list ->
int**

Compare the lengths of two lists. **compare_lengths l1 l2** is
equivalent to **compare (length l1) (length l2)** , except that the
computation stops after reaching the end of the shortest list.

**Since** 4.05

*val compare_length_with* : **'a list -> int ->
int**

Compare the length of a list to an integer. **compare_length_with
l len** is equivalent to **compare (length l) len** , except that the
computation stops after at most **len** iterations on the list.

**Since** 4.05

*val is_empty* : **'a list -> bool**

**is_empty l** is true if and only if **l** has no elements.
It is equivalent to **compare_length_with l 0 = 0** .

**Since** 5.1

*val cons* : **'a -> 'a list -> 'a list**

**cons x xs** is **x :: xs**

**Since** 4.03 (4.05 in ListLabels)

*val hd* : **'a list -> 'a**

Return the first element of the given list.

**Raises Failure** if the list is empty.

*val tl* : **'a list -> 'a list**

Return the given list without its first element.

**Raises Failure** if the list is empty.

*val nth* : **'a list -> int -> 'a**

Return the **n** -th element of the given list. The first
element (head of the list) is at position 0.

**Raises Failure** if the list is too short.

**Raises Invalid_argument** if **n** is negative.

*val nth_opt* : **'a list -> int -> 'a option**

Return the **n** -th element of the given list. The first
element (head of the list) is at position 0. Return **None** if the list
is too short.

**Since** 4.05

**Raises Invalid_argument** if **n** is negative.

*val rev* : **'a list -> 'a list**

List reversal.

*val init* : **int -> (int -> 'a) -> 'a
list**

**init len f** is **[f 0; f 1; ...; f (len-1)]** , evaluated
left to right.

**Since** 4.06

**Raises Invalid_argument** if **len < 0** .

*val append* : **'a list -> 'a list -> 'a list**

**append l0 l1** appends **l1** to **l0** . Same function
as the infix operator **@** .

**Since** 5.1 this function is tail-recursive.

*val rev_append* : **'a list -> 'a list -> 'a
list**

**rev_append l1 l2** reverses **l1** and concatenates it
with **l2** . This is equivalent to **(** **List.rev** **l1) @
l2** .

*val concat* : **'a list list -> 'a list**

Concatenate a list of lists. The elements of the argument are all concatenated together (in the same order) to give the result. Not tail-recursive (length of the argument + length of the longest sub-list).

*val flatten* : **'a list list -> 'a list**

Same as **List.concat** . Not tail-recursive (length of the
argument + length of the longest sub-list).

## Comparison

*val equal* : **('a -> 'a -> bool) -> 'a list ->
'a list -> bool**

**equal eq [a1; ...; an] [b1; ..; bm]** holds when the two
input lists have the same length, and for each pair of elements **ai** ,
**bi** at the same position we have **eq ai bi** .

Note: the **eq** function may be called even if the lists have
different length. If you know your equality function is costly, you may want
to check **List.compare_lengths** first.

**Since** 4.12

*val compare* : **('a -> 'a -> int) -> 'a list
-> 'a list -> int**

**compare cmp [a1; ...; an] [b1; ...; bm]** performs a
lexicographic comparison of the two input lists, using the same **'a ->
'a -> int** interface as **compare** :

- **a1 :: l1** is smaller than **a2 :: l2** (negative
result) if **a1** is smaller than **a2** , or if they are equal (0
result) and **l1** is smaller than **l2**

-the empty list **[]** is strictly smaller than non-empty
lists

Note: the **cmp** function will be called even if the lists
have different lengths.

**Since** 4.12

## Iterators

*val iter* : **('a -> unit) -> 'a list ->
unit**

**iter f [a1; ...; an]** applies function **f** in turn to
**[a1; ...; an]** . It is equivalent to **f a1; f a2; ...; f an**
.

*val iteri* : **(int -> 'a -> unit) -> 'a list
-> unit**

Same as **List.iter** , but the function is applied to the
index of the element as first argument (counting from 0), and the element
itself as second argument.

**Since** 4.00

*val map* : **('a -> 'b) -> 'a list -> 'b
list**

**map f [a1; ...; an]** applies function **f** to **a1,
..., an** , and builds the list **[f a1; ...; f an]** with the results
returned by **f** .

*val mapi* : **(int -> 'a -> 'b) -> 'a list ->
'b list**

Same as **List.map** , but the function is applied to the index
of the element as first argument (counting from 0), and the element itself
as second argument.

**Since** 4.00

*val rev_map* : **('a -> 'b) -> 'a list -> 'b
list**

**rev_map f l** gives the same result as **List.rev**
**(** **List.map** **f l)** , but is more efficient.

*val filter_map* : **('a -> 'b option) -> 'a list
-> 'b list**

**filter_map f l** applies **f** to every element of
**l** , filters out the **None** elements and returns the list of the
arguments of the **Some** elements.

**Since** 4.08

*val concat_map* : **('a -> 'b list) -> 'a list ->
'b list**

**concat_map f l** gives the same result as **List.concat**
**(** **List.map** **f l)** . Tail-recursive.

**Since** 4.10

*val fold_left_map* : **('acc -> 'a -> 'acc * 'b)
-> 'acc -> 'a list -> 'acc * 'b list**

**fold_left_map** is a combination of **fold_left** and
**map** that threads an accumulator through calls to **f** .

**Since** 4.11

*val fold_left* : **('acc -> 'a -> 'acc) -> 'acc
-> 'a list -> 'acc**

**fold_left f init [b1; ...; bn]** is **f (... (f (f init b1)
b2) ...) bn** .

*val fold_right* : **('a -> 'acc -> 'acc) -> 'a
list -> 'acc -> 'acc**

**fold_right f [a1; ...; an] init** is **f a1 (f a2 (... (f an
init) ...))** . Not tail-recursive.

## Iterators on two lists

*val iter2* : **('a -> 'b -> unit) -> 'a list ->
'b list -> unit**

**iter2 f [a1; ...; an] [b1; ...; bn]** calls in turn **f a1
b1; ...; f an bn** .

**Raises Invalid_argument** if the two lists are determined to
have different lengths.

*val map2* : **('a -> 'b -> 'c) -> 'a list -> 'b
list -> 'c list**

**map2 f [a1; ...; an] [b1; ...; bn]** is **[f a1 b1; ...; f
an bn]** .

**Raises Invalid_argument** if the two lists are determined to
have different lengths.

*val rev_map2* : **('a -> 'b -> 'c) -> 'a list
-> 'b list -> 'c list**

**rev_map2 f l1 l2** gives the same result as **List.rev**
**(** **List.map2** **f l1 l2)** , but is more efficient.

*val fold_left2* : **('acc -> 'a -> 'b -> 'acc)
-> 'acc -> 'a list -> 'b list -> 'acc**

**fold_left2 f init [a1; ...; an] [b1; ...; bn]** is **f (...
(f (f init a1 b1) a2 b2) ...) an bn** .

**Raises Invalid_argument** if the two lists are determined to
have different lengths.

*val fold_right2* : **('a -> 'b -> 'acc -> 'acc)
-> 'a list -> 'b list -> 'acc -> 'acc**

**fold_right2 f [a1; ...; an] [b1; ...; bn] init** is **f a1
b1 (f a2 b2 (... (f an bn init) ...))** .

**Raises Invalid_argument** if the two lists are determined to
have different lengths. Not tail-recursive.

## List scanning

*val for_all* : **('a -> bool) -> 'a list ->
bool**

**for_all f [a1; ...; an]** checks if all elements of the list
satisfy the predicate **f** . That is, it returns **(f a1) && (f
a2) && ... && (f an)** for a non-empty list and
**true** if the list is empty.

*val exists* : **('a -> bool) -> 'a list ->
bool**

**exists f [a1; ...; an]** checks if at least one element of
the list satisfies the predicate **f** . That is, it returns **(f a1) ||
(f a2) || ... || (f an)** for a non-empty list and **false** if the
list is empty.

*val for_all2* : **('a -> 'b -> bool) -> 'a list
-> 'b list -> bool**

Same as **List.for_all** , but for a two-argument
predicate.

**Raises Invalid_argument** if the two lists are determined to
have different lengths.

*val exists2* : **('a -> 'b -> bool) -> 'a list
-> 'b list -> bool**

Same as **List.exists** , but for a two-argument predicate.

**Raises Invalid_argument** if the two lists are determined to
have different lengths.

*val mem* : **'a -> 'a list -> bool**

**mem a set** is true if and only if **a** is equal to an
element of **set** .

*val memq* : **'a -> 'a list -> bool**

Same as **List.mem** , but uses physical equality instead of
structural equality to compare list elements.

## List searching

*val find* : **('a -> bool) -> 'a list ->
'a**

**find f l** returns the first element of the list **l**
that satisfies the predicate **f** .

**Raises Not_found** if there is no value that satisfies
**f** in the list **l** .

*val find_opt* : **('a -> bool) -> 'a list -> 'a
option**

**find f l** returns the first element of the list **l**
that satisfies the predicate **f** . Returns **None** if there is no
value that satisfies **f** in the list **l** .

**Since** 4.05

*val find_index* : **('a -> bool) -> 'a list -> int
option**

**find_index f xs** returns **Some i** , where **i** is
the index of the first element of the list **xs** that satisfies **f
x** , if there is such an element.

It returns **None** if there is no such element.

**Since** 5.1

*val find_map* : **('a -> 'b option) -> 'a list ->
'b option**

**find_map f l** applies **f** to the elements of **l**
in order, and returns the first result of the form **Some v** , or
**None** if none exist.

**Since** 4.10

*val find_mapi* : **(int -> 'a -> 'b option) -> 'a
list -> 'b option**

Same as **find_map** , but the predicate is applied to the
index of the element as first argument (counting from 0), and the element
itself as second argument.

**Since** 5.1

*val filter* : **('a -> bool) -> 'a list -> 'a
list**

**filter f l** returns all the elements of the list **l**
that satisfy the predicate **f** . The order of the elements in the input
list is preserved.

*val find_all* : **('a -> bool) -> 'a list -> 'a
list**

**find_all** is another name for **List.filter** .

*val filteri* : **(int -> 'a -> bool) -> 'a list
-> 'a list**

Same as **List.filter** , but the predicate is applied to the
index of the element as first argument (counting from 0), and the element
itself as second argument.

**Since** 4.11

*val partition* : **('a -> bool) -> 'a list -> 'a
list * 'a list**

**partition f l** returns a pair of lists **(l1, l2)** ,
where **l1** is the list of all the elements of **l** that satisfy the
predicate **f** , and **l2** is the list of all the elements of
**l** that do not satisfy **f** . The order of the elements in the
input list is preserved.

*val partition_map* : **('a -> ('b, 'c) Either.t) ->
'a list -> 'b list * 'c list**

**partition_map f l** returns a pair of lists **(l1, l2)**
such that, for each element **x** of the input list **l** :

-if **f x** is **Left y1** , then **y1** is in **l1**
, and

-if **f x** is **Right y2** , then **y2** is in **l2**
.

The output elements are included in **l1** and **l2** in the
same relative order as the corresponding input elements in **l** .

In particular, **partition_map (fun x -> if f x then Left x
else Right x) l** is equivalent to **partition f l** .

**Since** 4.12

## Association lists

*val assoc* : **'a -> ('a * 'b) list -> 'b**

**assoc a l** returns the value associated with key **a** in
the list of pairs **l** . That is, **assoc a [ ...; (a,b); ...] = b**
if **(a,b)** is the leftmost binding of **a** in list **l** .

**Raises Not_found** if there is no value associated with
**a** in the list **l** .

*val assoc_opt* : **'a -> ('a * 'b) list -> 'b
option**

**assoc_opt a l** returns the value associated with key
**a** in the list of pairs **l** . That is, **assoc_opt a [ ...;
(a,b); ...] = Some b** if **(a,b)** is the leftmost binding of **a**
in list **l** . Returns **None** if there is no value associated with
**a** in the list **l** .

**Since** 4.05

*val assq* : **'a -> ('a * 'b) list -> 'b**

Same as **List.assoc** , but uses physical equality instead of
structural equality to compare keys.

*val assq_opt* : **'a -> ('a * 'b) list -> 'b
option**

Same as **List.assoc_opt** , but uses physical equality instead
of structural equality to compare keys.

**Since** 4.05

*val mem_assoc* : **'a -> ('a * 'b) list ->
bool**

Same as **List.assoc** , but simply return **true** if a
binding exists, and **false** if no bindings exist for the given key.

*val mem_assq* : **'a -> ('a * 'b) list ->
bool**

Same as **List.mem_assoc** , but uses physical equality instead
of structural equality to compare keys.

*val remove_assoc* : **'a -> ('a * 'b) list -> ('a *
'b) list**

**remove_assoc a l** returns the list of pairs **l** without
the first pair with key **a** , if any. Not tail-recursive.

*val remove_assq* : **'a -> ('a * 'b) list -> ('a *
'b) list**

Same as **List.remove_assoc** , but uses physical equality
instead of structural equality to compare keys. Not tail-recursive.

## Lists of pairs

*val split* : **('a * 'b) list -> 'a list * 'b
list**

Transform a list of pairs into a pair of lists: **split [(a1,b1);
...; (an,bn)]** is **([a1; ...; an], [b1; ...; bn])** . Not
tail-recursive.

*val combine* : **'a list -> 'b list -> ('a * 'b)
list**

Transform a pair of lists into a list of pairs: **combine [a1;
...; an] [b1; ...; bn]** is **[(a1,b1); ...; (an,bn)]** .

**Raises Invalid_argument** if the two lists have different
lengths. Not tail-recursive.

## Sorting

*val sort* : **('a -> 'a -> int) -> 'a list ->
'a list**

Sort a list in increasing order according to a comparison
function. The comparison function must return 0 if its arguments compare as
equal, a positive integer if the first is greater, and a negative integer if
the first is smaller (see Array.sort for a complete specification). For
example, **compare** is a suitable comparison function. The resulting
list is sorted in increasing order. **List.sort** is guaranteed to run in
constant heap space (in addition to the size of the result list) and
logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

*val stable_sort* : **('a -> 'a -> int) -> 'a list
-> 'a list**

Same as **List.sort** , but the sorting algorithm is guaranteed
to be stable (i.e. elements that compare equal are kept in their original
order).

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.

*val fast_sort* : **('a -> 'a -> int) -> 'a list
-> 'a list**

Same as **List.sort** or **List.stable_sort** , whichever is
faster on typical input.

*val sort_uniq* : **('a -> 'a -> int) -> 'a list
-> 'a list**

Same as **List.sort** , but also remove duplicates.

**Since** 4.02 (4.03 in ListLabels)

*val merge* : **('a -> 'a -> int) -> 'a list ->
'a list -> 'a list**

Merge two lists: Assuming that **l1** and **l2** are sorted
according to the comparison function **cmp** , **merge cmp l1 l2**
will return a sorted list containing all the elements of **l1** and
**l2** . If several elements compare equal, the elements of **l1**
will be before the elements of **l2** . Not tail-recursive (sum of the
lengths of the arguments).

## Lists and Sequences

*val to_seq* : **'a list -> 'a Seq.t**

Iterate on the list.

**Since** 4.07

*val of_seq* : **'a Seq.t -> 'a list**

Create a list from a sequence.

**Since** 4.07

2023-11-11 | OCamldoc |