SRC/zlanhp.f(3) | Library Functions Manual | SRC/zlanhp.f(3) |
NAME
SRC/zlanhp.f
SYNOPSIS
Functions/Subroutines
double precision function zlanhp (norm, uplo, n, ap, work)
ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a complex
Hermitian matrix supplied in packed form.
Function/Subroutine Documentation
double precision function zlanhp (character norm, character uplo, integer n, complex*16, dimension( * ) ap, double precision, dimension( * ) work)
ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
Purpose:
ZLANHP returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex hermitian matrix A, supplied in packed form.
Returns
ZLANHP
ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
Parameters
NORM
NORM is CHARACTER*1 Specifies the value to be returned in ZLANHP as described above.
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the hermitian matrix A is supplied. = 'U': Upper triangular part of A is supplied = 'L': Lower triangular part of A is supplied
N
N is INTEGER The order of the matrix A. N >= 0. When N = 0, ZLANHP is set to zero.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2) The upper or lower triangle of the hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, WORK is not referenced.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 116 of file zlanhp.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |