SRC/zlamswlq.f(3) Library Functions Manual SRC/zlamswlq.f(3)

SRC/zlamswlq.f


subroutine zlamswlq (side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
ZLAMSWLQ

ZLAMSWLQ

Purpose:

    ZLAMSWLQ overwrites the general complex M-by-N matrix C with
                    SIDE = 'L'     SIDE = 'R'
    TRANS = 'N':      Q * C          C * Q
    TRANS = 'C':      Q**H * C       C * Q**H
    where Q is a complex unitary matrix defined as the product of blocked
    elementary reflectors computed by short wide LQ
    factorization (ZLASWLQ)

Parameters

SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**H from the Left;
          = 'R': apply Q or Q**H from the Right.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'C':  Conjugate Transpose, apply Q**H.

M

          M is INTEGER
          The number of rows of the matrix C.  M >=0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

K

          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          M >= K >= 0;

MB

          MB is INTEGER
          The row block size to be used in the blocked LQ.
          M >= MB >= 1

NB

          NB is INTEGER
          The column block size to be used in the blocked LQ.
          NB > M.

A

          A is COMPLEX*16 array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the blocked
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          ZLASWLQ in the first k rows of its array argument A.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= MAX(1,K).

T

          T is COMPLEX*16 array, dimension
          ( M * Number of blocks(CEIL(N-K/NB-K)),
          The blocked upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.  See below
          for further details.

LDT

          LDT is INTEGER
          The leading dimension of the array T.  LDT >= MB.

C

          C is COMPLEX*16 array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,NB) * MB;
          if SIDE = 'R', LWORK >= max(1,M) * MB.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

 Short-Wide LQ (SWLQ) performs LQ by a sequence of unitary transformations,
 representing Q as a product of other unitary matrices
   Q = Q(1) * Q(2) * . . . * Q(k)
 where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
   . . .
 Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
 stored under the diagonal of rows 1:MB of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,1:N).
 For more information see Further Details in GELQT.
 Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
 stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
 The last Q(k) may use fewer rows.
 For more information see Further Details in TPLQT.
 For more details of the overall algorithm, see the description of
 Sequential TSQR in Section 2.2 of [1].
 [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
     SIAM J. Sci. Comput, vol. 34, no. 1, 2012

Definition at line 195 of file zlamswlq.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK