SRC/zlaic1.f(3) Library Functions Manual SRC/zlaic1.f(3)

SRC/zlaic1.f


subroutine zlaic1 (job, j, x, sest, w, gamma, sestpr, s, c)
ZLAIC1 applies one step of incremental condition estimation.

ZLAIC1 applies one step of incremental condition estimation.

Purpose:

!>
!> ZLAIC1 applies one step of incremental condition estimation in
!> its simplest version:
!>
!> Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
!> lower triangular matrix L, such that
!>          twonorm(L*x) = sest
!> Then ZLAIC1 computes sestpr, s, c such that
!> the vector
!>                 [ s*x ]
!>          xhat = [  c  ]
!> is an approximate singular vector of
!>                 [ L       0  ]
!>          Lhat = [ w**H gamma ]
!> in the sense that
!>          twonorm(Lhat*xhat) = sestpr.
!>
!> Depending on JOB, an estimate for the largest or smallest singular
!> value is computed.
!>
!> Note that [s c]**H and sestpr**2 is an eigenpair of the system
!>
!>     diag(sest*sest, 0) + [alpha  gamma] * [ conjg(alpha) ]
!>                                           [ conjg(gamma) ]
!>
!> where  alpha =  x**H * w.
!> 

Parameters

JOB
!>          JOB is INTEGER
!>          = 1: an estimate for the largest singular value is computed.
!>          = 2: an estimate for the smallest singular value is computed.
!> 

J

!>          J is INTEGER
!>          Length of X and W
!> 

X

!>          X is COMPLEX*16 array, dimension (J)
!>          The j-vector x.
!> 

SEST

!>          SEST is DOUBLE PRECISION
!>          Estimated singular value of j by j matrix L
!> 

W

!>          W is COMPLEX*16 array, dimension (J)
!>          The j-vector w.
!> 

GAMMA

!>          GAMMA is COMPLEX*16
!>          The diagonal element gamma.
!> 

SESTPR

!>          SESTPR is DOUBLE PRECISION
!>          Estimated singular value of (j+1) by (j+1) matrix Lhat.
!> 

S

!>          S is COMPLEX*16
!>          Sine needed in forming xhat.
!> 

C

!>          C is COMPLEX*16
!>          Cosine needed in forming xhat.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 134 of file zlaic1.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK