SRC/zlahef.f(3) | Library Functions Manual | SRC/zlahef.f(3) |
NAME
SRC/zlahef.f
SYNOPSIS
Functions/Subroutines
subroutine zlahef (uplo, n, nb, kb, a, lda, ipiv, w, ldw,
info)
ZLAHEF computes a partial factorization of a complex Hermitian
indefinite matrix using the Bunch-Kaufman diagonal pivoting method (blocked
algorithm, calling Level 3 BLAS).
Function/Subroutine Documentation
subroutine zlahef (character uplo, integer n, integer nb, integer kb, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldw, * ) w, integer ldw, integer info)
ZLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kaufman diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
Purpose:
ZLAHEF computes a partial factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method. The partial factorization has the form: A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L' ( L21 I ) ( 0 A22 ) ( 0 I ) where the order of D is at most NB. The actual order is returned in the argument KB, and is either NB or NB-1, or N if N <= NB. Note that U**H denotes the conjugate transpose of U. ZLAHEF is an auxiliary routine called by ZHETRF. It uses blocked code (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular
N
N is INTEGER The order of the matrix A. N >= 0.
NB
NB is INTEGER The maximum number of columns of the matrix A that should be factored. NB should be at least 2 to allow for 2-by-2 pivot blocks.
KB
KB is INTEGER The number of columns of A that were actually factored. KB is either NB-1 or NB, or N if N <= NB.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, A contains details of the partial factorization.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D. If UPLO = 'U': Only the last KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L': Only the first KB elements of IPIV are set. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W
W is COMPLEX*16 array, dimension (LDW,NB)
LDW
LDW is INTEGER The leading dimension of the array W. LDW >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit > 0: if INFO = k, D(k,k) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
December 2016, Igor Kozachenko, Computer Science Division, University of California, Berkeley
Definition at line 176 of file zlahef.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |