SRC/zla_gercond_c.f(3) Library Functions Manual SRC/zla_gercond_c.f(3)

SRC/zla_gercond_c.f


double precision function zla_gercond_c (trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
ZLA_GERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices.

ZLA_GERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices.

Purpose:

    ZLA_GERCOND_C computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.

Parameters

TRANS
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX*16 array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by ZGETRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by ZGETRF; row i of the matrix was interchanged
     with row IPIV(i).

C

          C is DOUBLE PRECISION array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C)).

CAPPLY

          CAPPLY is LOGICAL
     If .TRUE. then access the vector C in the formula above.

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX*16 array, dimension (2*N).
     Workspace.

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 140 of file zla_gercond_c.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK