SRC/zla_gbrcond_c.f(3) Library Functions Manual SRC/zla_gbrcond_c.f(3)

SRC/zla_gbrcond_c.f


double precision function zla_gbrcond_c (trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, c, capply, info, work, rwork)
ZLA_GBRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general banded matrices.

ZLA_GBRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general banded matrices.

Purpose:

    ZLA_GBRCOND_C Computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.

Parameters

TRANS
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

KL

          KL is INTEGER
     The number of subdiagonals within the band of A.  KL >= 0.

KU

          KU is INTEGER
     The number of superdiagonals within the band of A.  KU >= 0.

AB

          AB is COMPLEX*16 array, dimension (LDAB,N)
     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
     The j-th column of A is stored in the j-th column of the
     array AB as follows:
     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

LDAB

          LDAB is INTEGER
     The leading dimension of the array AB.  LDAB >= KL+KU+1.

AFB

          AFB is COMPLEX*16 array, dimension (LDAFB,N)
     Details of the LU factorization of the band matrix A, as
     computed by ZGBTRF.  U is stored as an upper triangular
     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
     and the multipliers used during the factorization are stored
     in rows KL+KU+2 to 2*KL+KU+1.

LDAFB

          LDAFB is INTEGER
     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.

IPIV

          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by ZGBTRF; row i of the matrix was interchanged
     with row IPIV(i).

C

          C is DOUBLE PRECISION array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C)).

CAPPLY

          CAPPLY is LOGICAL
     If .TRUE. then access the vector C in the formula above.

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX*16 array, dimension (2*N).
     Workspace.

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N).
     Workspace.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 159 of file zla_gbrcond_c.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK