BLAS/SRC/zhpr.f(3) | Library Functions Manual | BLAS/SRC/zhpr.f(3) |
NAME
BLAS/SRC/zhpr.f
SYNOPSIS
Functions/Subroutines
subroutine zhpr (uplo, n, alpha, x, incx, ap)
ZHPR
Function/Subroutine Documentation
subroutine zhpr (character uplo, integer n, double precision alpha, complex*16, dimension(*) x, integer incx, complex*16, dimension(*) ap)
ZHPR
Purpose:
ZHPR performs the hermitian rank 1 operation A := alpha*x*x**H + A, where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix, supplied in packed form.
Parameters
UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP.
N
N is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.
ALPHA
ALPHA is DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha.
X
X is COMPLEX*16 array, dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x.
INCX
INCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
AP
AP is COMPLEX*16 array, dimension at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.
Definition at line 129 of file zhpr.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |