SRC/zhetri_rook.f(3) | Library Functions Manual | SRC/zhetri_rook.f(3) |
NAME
SRC/zhetri_rook.f
SYNOPSIS
Functions/Subroutines
subroutine zhetri_rook (uplo, n, a, lda, ipiv, work, info)
ZHETRI_ROOK computes the inverse of HE matrix using the factorization
obtained with the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
Function/Subroutine Documentation
subroutine zhetri_rook (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer info)
ZHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch-Kaufman ('rook') diagonal pivoting method.
Purpose:
ZHETRI_ROOK computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF_ROOK.
Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H.
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF_ROOK. On exit, if INFO = 0, the (Hermitian) inverse of the original matrix. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF_ROOK.
WORK
WORK is COMPLEX*16 array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2013, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester
Definition at line 127 of file zhetri_rook.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |