SRC/zhetrd.f(3) Library Functions Manual SRC/zhetrd.f(3)

SRC/zhetrd.f


subroutine zhetrd (uplo, n, a, lda, d, e, tau, work, lwork, info)
ZHETRD

ZHETRD

Purpose:

 ZHETRD reduces a complex Hermitian matrix A to real symmetric
 tridiagonal form T by a unitary similarity transformation:
 Q**H * A * Q = T.

Parameters

UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if UPLO = 'U', the diagonal and first superdiagonal
          of A are overwritten by the corresponding elements of the
          tridiagonal matrix T, and the elements above the first
          superdiagonal, with the array TAU, represent the unitary
          matrix Q as a product of elementary reflectors; if UPLO
          = 'L', the diagonal and first subdiagonal of A are over-
          written by the corresponding elements of the tridiagonal
          matrix T, and the elements below the first subdiagonal, with
          the array TAU, represent the unitary matrix Q as a product
          of elementary reflectors. See Further Details.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

D

          D is DOUBLE PRECISION array, dimension (N)
          The diagonal elements of the tridiagonal matrix T:
          D(i) = A(i,i).

E

          E is DOUBLE PRECISION array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

TAU

          TAU is COMPLEX*16 array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details).

WORK

          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= 1.
          For optimum performance LWORK >= N*NB, where NB is the
          optimal blocksize.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  If UPLO = 'U', the matrix Q is represented as a product of elementary
  reflectors
     Q = H(n-1) . . . H(2) H(1).
  Each H(i) has the form
     H(i) = I - tau * v * v**H
  where tau is a complex scalar, and v is a complex vector with
  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
  A(1:i-1,i+1), and tau in TAU(i).
  If UPLO = 'L', the matrix Q is represented as a product of elementary
  reflectors
     Q = H(1) H(2) . . . H(n-1).
  Each H(i) has the form
     H(i) = I - tau * v * v**H
  where tau is a complex scalar, and v is a complex vector with
  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
  and tau in TAU(i).
  The contents of A on exit are illustrated by the following examples
  with n = 5:
  if UPLO = 'U':                       if UPLO = 'L':
    (  d   e   v2  v3  v4 )              (  d                  )
    (      d   e   v3  v4 )              (  e   d              )
    (          d   e   v4 )              (  v1  e   d          )
    (              d   e  )              (  v1  v2  e   d      )
    (                  d  )              (  v1  v2  v3  e   d  )
  where d and e denote diagonal and off-diagonal elements of T, and vi
  denotes an element of the vector defining H(i).

Definition at line 191 of file zhetrd.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK