TESTING/LIN/zhet01_3.f(3) | Library Functions Manual | TESTING/LIN/zhet01_3.f(3) |
NAME
TESTING/LIN/zhet01_3.f
SYNOPSIS
Functions/Subroutines
subroutine zhet01_3 (uplo, n, a, lda, afac, ldafac, e,
ipiv, c, ldc, rwork, resid)
ZHET01_3
Function/Subroutine Documentation
subroutine zhet01_3 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldafac, * ) afac, integer ldafac, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, complex*16, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) rwork, double precision resid)
ZHET01_3
Purpose:
!> !> ZHET01_3 reconstructs a Hermitian indefinite matrix A from its !> block L*D*L' or U*D*U' factorization computed by ZHETRF_RK !> (or ZHETRF_BK) and computes the residual !> norm( C - A ) / ( N * norm(A) * EPS ), !> where C is the reconstructed matrix and EPS is the machine epsilon. !>
Parameters
UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !>
N
!> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The original Hermitian matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N) !>
AFAC
!> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) !> Diagonal of the block diagonal matrix D and factors U or L !> as computed by ZHETRF_RK and ZHETRF_BK: !> a) ONLY diagonal elements of the Hermitian block diagonal !> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); !> (superdiagonal (or subdiagonal) elements of D !> should be provided on entry in array E), and !> b) If UPLO = 'U': factor U in the superdiagonal part of A. !> If UPLO = 'L': factor L in the subdiagonal part of A. !>
LDAFAC
!> LDAFAC is INTEGER !> The leading dimension of the array AFAC. !> LDAFAC >= max(1,N). !>
E
!> E is COMPLEX*16 array, dimension (N) !> On entry, contains the superdiagonal (or subdiagonal) !> elements of the Hermitian block diagonal matrix D !> with 1-by-1 or 2-by-2 diagonal blocks, where !> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; !> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices from ZHETRF_RK (or ZHETRF_BK). !>
C
!> C is COMPLEX*16 array, dimension (LDC,N) !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,N). !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
RESID
!> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 139 of file zhet01_3.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |