SRC/zhesv_rook.f(3) Library Functions Manual SRC/zhesv_rook.f(3)

SRC/zhesv_rook.f


subroutine zhesv_rook (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
ZHESV_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using the bounded Bunch-Kaufman (rook")diagonalpivotingmethod

ZHESV_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using the bounded Bunch-Kaufman ("rook") diagonal pivoting method

Purpose:

!>
!> ZHESV_ROOK computes the solution to a complex system of linear equations
!>    A * X = B,
!> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
!> matrices.
!>
!> The bounded Bunch-Kaufman () diagonal pivoting method is used
!> to factor A as
!>    A = U * D * U**T,  if UPLO = 'U', or
!>    A = L * D * L**T,  if UPLO = 'L',
!> where U (or L) is a product of permutation and unit upper (lower)
!> triangular matrices, and D is Hermitian and block diagonal with
!> 1-by-1 and 2-by-2 diagonal blocks.
!>
!> ZHETRF_ROOK is called to compute the factorization of a complex
!> Hermition matrix A using the bounded Bunch-Kaufman () diagonal
!> pivoting method.
!>
!> The factored form of A is then used to solve the system
!> of equations A * X = B by calling ZHETRS_ROOK (uses BLAS 2).
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 

N

!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 

NRHS

!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
!>          N-by-N upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>
!>          On exit, if INFO = 0, the block diagonal matrix D and the
!>          multipliers used to obtain the factor U or L from the
!>          factorization A = U*D*U**H or A = L*D*L**H as computed by
!>          ZHETRF_ROOK.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

IPIV

!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D.
!>
!>          If UPLO = 'U':
!>             Only the last KB elements of IPIV are set.
!>
!>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
!>             interchanged and D(k,k) is a 1-by-1 diagonal block.
!>
!>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
!>             columns k and -IPIV(k) were interchanged and rows and
!>             columns k-1 and -IPIV(k-1) were inerchaged,
!>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
!>
!>          If UPLO = 'L':
!>             Only the first KB elements of IPIV are set.
!>
!>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
!>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
!>
!>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
!>             columns k and -IPIV(k) were interchanged and rows and
!>             columns k+1 and -IPIV(k+1) were inerchaged,
!>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The length of WORK.  LWORK >= 1, and for best performance
!>          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
!>          ZHETRF_ROOK.
!>          for LWORK < N, TRS will be done with Level BLAS 2
!>          for LWORK >= N, TRS will be done with Level BLAS 3
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
!>               has been completed, but the block diagonal matrix D is
!>               exactly singular, so the solution could not be computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

!>
!>  November 2013,  Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> .fi

Definition at line 203 of file zhesv_rook.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK