SRC/zhbgvx.f(3) Library Functions Manual SRC/zhbgvx.f(3)

SRC/zhbgvx.f


subroutine zhbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
ZHBGVX

ZHBGVX

Purpose:

 ZHBGVX computes all the eigenvalues, and optionally, the eigenvectors
 of a complex generalized Hermitian-definite banded eigenproblem, of
 the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
 and banded, and B is also positive definite.  Eigenvalues and
 eigenvectors can be selected by specifying either all eigenvalues,
 a range of values or a range of indices for the desired eigenvalues.

Parameters

JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.

RANGE

          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found;
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found;
          = 'I': the IL-th through IU-th eigenvalues will be found.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.

N

          N is INTEGER
          The order of the matrices A and B.  N >= 0.

KA

          KA is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KA >= 0.

KB

          KB is INTEGER
          The number of superdiagonals of the matrix B if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KB >= 0.

AB

          AB is COMPLEX*16 array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first ka+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
          On exit, the contents of AB are destroyed.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KA+1.

BB

          BB is COMPLEX*16 array, dimension (LDBB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix B, stored in the first kb+1 rows of the array.  The
          j-th column of B is stored in the j-th column of the array BB
          as follows:
          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
          On exit, the factor S from the split Cholesky factorization
          B = S**H*S, as returned by ZPBSTF.

LDBB

          LDBB is INTEGER
          The leading dimension of the array BB.  LDBB >= KB+1.

Q

          Q is COMPLEX*16 array, dimension (LDQ, N)
          If JOBZ = 'V', the n-by-n matrix used in the reduction of
          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
          and consequently C to tridiagonal form.
          If JOBZ = 'N', the array Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q.  If JOBZ = 'N',
          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).

VL

          VL is DOUBLE PRECISION
          If RANGE='V', the lower bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.

VU

          VU is DOUBLE PRECISION
          If RANGE='V', the upper bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.

IL

          IL is INTEGER
          If RANGE='I', the index of the
          smallest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.

IU

          IU is INTEGER
          If RANGE='I', the index of the
          largest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.

ABSTOL

          ABSTOL is DOUBLE PRECISION
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to
                  ABSTOL + EPS *   max( |a|,|b| ) ,
          where EPS is the machine precision.  If ABSTOL is less than
          or equal to zero, then  EPS*|T|  will be used in its place,
          where |T| is the 1-norm of the tridiagonal matrix obtained
          by reducing AP to tridiagonal form.
          Eigenvalues will be computed most accurately when ABSTOL is
          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
          If this routine returns with INFO>0, indicating that some
          eigenvectors did not converge, try setting ABSTOL to
          2*DLAMCH('S').

M

          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

W

          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.

Z

          Z is COMPLEX*16 array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors, with the i-th column of Z holding the
          eigenvector associated with W(i). The eigenvectors are
          normalized so that Z**H*B*Z = I.
          If JOBZ = 'N', then Z is not referenced.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= N.

WORK

          WORK is COMPLEX*16 array, dimension (N)

RWORK

          RWORK is DOUBLE PRECISION array, dimension (7*N)

IWORK

          IWORK is INTEGER array, dimension (5*N)

IFAIL

          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is:
             <= N:  then i eigenvectors failed to converge.  Their
                    indices are stored in array IFAIL.
             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
                    returned INFO = i: B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 297 of file zhbgvx.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK