SRC/zhbgvd.f(3) | Library Functions Manual | SRC/zhbgvd.f(3) |
NAME
SRC/zhbgvd.f
SYNOPSIS
Functions/Subroutines
subroutine zhbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb,
ldbb, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHBGVD
Function/Subroutine Documentation
subroutine zhbgvd (character jobz, character uplo, integer n, integer ka, integer kb, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldbb, * ) bb, integer ldbb, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)
ZHBGVD
Purpose:
ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.
Parameters
JOBZ
JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored.
N
N is INTEGER The order of the matrices A and B. N >= 0.
KA
KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB
KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= KA+1.
BB
BB is COMPLEX*16 array, dimension (LDBB, N) On entry, the upper or lower triangle of the Hermitian band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by ZPBSTF.
LDBB
LDBB is INTEGER The leading dimension of the array BB. LDBB >= KB+1.
W
W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order.
Z
Z is COMPLEX*16 array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so that Z**H*B*Z = I. If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= N.
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N. If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
LRWORK
LRWORK is INTEGER The dimension of array RWORK. If N <= 1, LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >= N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER The dimension of array IWORK. If JOBZ = 'N' or N <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is: <= N: the algorithm failed to converge: i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF returned INFO = i: B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky,
USA
Definition at line 243 of file zhbgvd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |