TESTING/LIN/zgtt01.f(3) | Library Functions Manual | TESTING/LIN/zgtt01.f(3) |
NAME
TESTING/LIN/zgtt01.f
SYNOPSIS
Functions/Subroutines
subroutine zgtt01 (n, dl, d, du, dlf, df, duf, du2, ipiv,
work, ldwork, rwork, resid)
ZGTT01
Function/Subroutine Documentation
subroutine zgtt01 (integer n, complex*16, dimension( * ) dl, complex*16, dimension( * ) d, complex*16, dimension( * ) du, complex*16, dimension( * ) dlf, complex*16, dimension( * ) df, complex*16, dimension( * ) duf, complex*16, dimension( * ) du2, integer, dimension( * ) ipiv, complex*16, dimension( ldwork, * ) work, integer ldwork, double precision, dimension( * ) rwork, double precision resid)
ZGTT01
Purpose:
ZGTT01 reconstructs a tridiagonal matrix A from its LU factorization and computes the residual norm(L*U - A) / ( norm(A) * EPS ), where EPS is the machine epsilon.
Parameters
N
N is INTEGER The order of the matrix A. N >= 0.
DL
DL is COMPLEX*16 array, dimension (N-1) The (n-1) sub-diagonal elements of A.
D
D is COMPLEX*16 array, dimension (N) The diagonal elements of A.
DU
DU is COMPLEX*16 array, dimension (N-1) The (n-1) super-diagonal elements of A.
DLF
DLF is COMPLEX*16 array, dimension (N-1) The (n-1) multipliers that define the matrix L from the LU factorization of A.
DF
DF is COMPLEX*16 array, dimension (N) The n diagonal elements of the upper triangular matrix U from the LU factorization of A.
DUF
DUF is COMPLEX*16 array, dimension (N-1) The (n-1) elements of the first super-diagonal of U.
DU2
DU2 is COMPLEX*16 array, dimension (N-2) The (n-2) elements of the second super-diagonal of U.
IPIV
IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required.
WORK
WORK is COMPLEX*16 array, dimension (LDWORK,N)
LDWORK
LDWORK is INTEGER The leading dimension of the array WORK. LDWORK >= max(1,N).
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
RESID
RESID is DOUBLE PRECISION The scaled residual: norm(L*U - A) / (norm(A) * EPS)
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 132 of file zgtt01.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |