TESTING/EIG/zgsvts3.f(3) | Library Functions Manual | TESTING/EIG/zgsvts3.f(3) |
NAME
TESTING/EIG/zgsvts3.f
SYNOPSIS
Functions/Subroutines
subroutine zgsvts3 (m, p, n, a, af, lda, b, bf, ldb, u,
ldu, v, ldv, q, ldq, alpha, beta, r, ldr, iwork, work, lwork, rwork, result)
ZGSVTS3
Function/Subroutine Documentation
subroutine zgsvts3 (integer m, integer p, integer n, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, integer lda, complex*16, dimension( ldb, * ) b, complex*16, dimension( ldb, * ) bf, integer ldb, complex*16, dimension( ldu, * ) u, integer ldu, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldq, * ) q, integer ldq, double precision, dimension( * ) alpha, double precision, dimension( * ) beta, complex*16, dimension( ldr, * ) r, integer ldr, integer, dimension( * ) iwork, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( 6 ) result)
ZGSVTS3
Purpose:
ZGSVTS3 tests ZGGSVD3, which computes the GSVD of an M-by-N matrix A and a P-by-N matrix B: U'*A*Q = D1*R and V'*B*Q = D2*R.
Parameters
M
M is INTEGER The number of rows of the matrix A. M >= 0.
P
P is INTEGER The number of rows of the matrix B. P >= 0.
N
N is INTEGER The number of columns of the matrices A and B. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,M) The M-by-N matrix A.
AF
AF is COMPLEX*16 array, dimension (LDA,N) Details of the GSVD of A and B, as returned by ZGGSVD3, see ZGGSVD3 for further details.
LDA
LDA is INTEGER The leading dimension of the arrays A and AF. LDA >= max( 1,M ).
B
B is COMPLEX*16 array, dimension (LDB,P) On entry, the P-by-N matrix B.
BF
BF is COMPLEX*16 array, dimension (LDB,N) Details of the GSVD of A and B, as returned by ZGGSVD3, see ZGGSVD3 for further details.
LDB
LDB is INTEGER The leading dimension of the arrays B and BF. LDB >= max(1,P).
U
U is COMPLEX*16 array, dimension(LDU,M) The M by M unitary matrix U.
LDU
LDU is INTEGER The leading dimension of the array U. LDU >= max(1,M).
V
V is COMPLEX*16 array, dimension(LDV,M) The P by P unitary matrix V.
LDV
LDV is INTEGER The leading dimension of the array V. LDV >= max(1,P).
Q
Q is COMPLEX*16 array, dimension(LDQ,N) The N by N unitary matrix Q.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N).
ALPHA
ALPHA is DOUBLE PRECISION array, dimension (N)
BETA
BETA is DOUBLE PRECISION array, dimension (N) The generalized singular value pairs of A and B, the ``diagonal'' matrices D1 and D2 are constructed from ALPHA and BETA, see subroutine ZGGSVD3 for details.
R
R is COMPLEX*16 array, dimension(LDQ,N) The upper triangular matrix R.
LDR
LDR is INTEGER The leading dimension of the array R. LDR >= max(1,N).
IWORK
IWORK is INTEGER array, dimension (N)
WORK
WORK is COMPLEX*16 array, dimension (LWORK)
LWORK
LWORK is INTEGER The dimension of the array WORK, LWORK >= max(M,P,N)*max(M,P,N).
RWORK
RWORK is DOUBLE PRECISION array, dimension (max(M,P,N))
RESULT
RESULT is DOUBLE PRECISION array, dimension (6) The test ratios: RESULT(1) = norm( U'*A*Q - D1*R ) / ( MAX(M,N)*norm(A)*ULP) RESULT(2) = norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP) RESULT(3) = norm( I - U'*U ) / ( M*ULP ) RESULT(4) = norm( I - V'*V ) / ( P*ULP ) RESULT(5) = norm( I - Q'*Q ) / ( N*ULP ) RESULT(6) = 0 if ALPHA is in decreasing order; = ULPINV otherwise.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 206 of file zgsvts3.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |