SRC/zggsvd3.f(3) | Library Functions Manual | SRC/zggsvd3.f(3) |
NAME
SRC/zggsvd3.f
SYNOPSIS
Functions/Subroutines
subroutine zggsvd3 (jobu, jobv, jobq, m, n, p, k, l, a,
lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, lwork, rwork, iwork,
info)
ZGGSVD3 computes the singular value decomposition (SVD) for OTHER
matrices
Function/Subroutine Documentation
subroutine zggsvd3 (character jobu, character jobv, character jobq, integer m, integer n, integer p, integer k, integer l, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) alpha, double precision, dimension( * ) beta, complex*16, dimension( ldu, * ) u, integer ldu, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer, dimension( * ) iwork, integer info)
ZGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices
Purpose:
ZGGSVD3 computes the generalized singular value decomposition (GSVD) of an M-by-N complex matrix A and P-by-N complex matrix B: U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R ) where U, V and Q are unitary matrices. Let K+L = the effective numerical rank of the matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) 'diagonal' matrices and of the following structures, respectively: If M-K-L >= 0, K L D1 = K ( I 0 ) L ( 0 C ) M-K-L ( 0 0 ) K L D2 = L ( 0 S ) P-L ( 0 0 ) N-K-L K L ( 0 R ) = K ( 0 R11 R12 ) L ( 0 0 R22 ) where C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), S = diag( BETA(K+1), ... , BETA(K+L) ), C**2 + S**2 = I. R is stored in A(1:K+L,N-K-L+1:N) on exit. If M-K-L < 0, K M-K K+L-M D1 = K ( I 0 0 ) M-K ( 0 C 0 ) K M-K K+L-M D2 = M-K ( 0 S 0 ) K+L-M ( 0 0 I ) P-L ( 0 0 0 ) N-K-L K M-K K+L-M ( 0 R ) = K ( 0 R11 R12 R13 ) M-K ( 0 0 R22 R23 ) K+L-M ( 0 0 0 R33 ) where C = diag( ALPHA(K+1), ... , ALPHA(M) ), S = diag( BETA(K+1), ... , BETA(M) ), C**2 + S**2 = I. (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored ( 0 R22 R23 ) in B(M-K+1:L,N+M-K-L+1:N) on exit. The routine computes C, S, R, and optionally the unitary transformation matrices U, V and Q. In particular, if B is an N-by-N nonsingular matrix, then the GSVD of A and B implicitly gives the SVD of A*inv(B): A*inv(B) = U*(D1*inv(D2))*V**H. If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also equal to the CS decomposition of A and B. Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem: A**H*A x = lambda* B**H*B x. In some literature, the GSVD of A and B is presented in the form U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 ) where U and V are orthogonal and X is nonsingular, and D1 and D2 are ``diagonal''. The former GSVD form can be converted to the latter form by taking the nonsingular matrix X as X = Q*( I 0 ) ( 0 inv(R) )
Parameters
JOBU
JOBU is CHARACTER*1 = 'U': Unitary matrix U is computed; = 'N': U is not computed.
JOBV
JOBV is CHARACTER*1 = 'V': Unitary matrix V is computed; = 'N': V is not computed.
JOBQ
JOBQ is CHARACTER*1 = 'Q': Unitary matrix Q is computed; = 'N': Q is not computed.
M
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrices A and B. N >= 0.
P
P is INTEGER The number of rows of the matrix B. P >= 0.
K
K is INTEGER
L
L is INTEGER On exit, K and L specify the dimension of the subblocks described in Purpose. K + L = effective numerical rank of (A**H,B**H)**H.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A contains the triangular matrix R, or part of R. See Purpose for details.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
B
B is COMPLEX*16 array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, B contains part of the triangular matrix R if M-K-L < 0. See Purpose for details.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,P).
ALPHA
ALPHA is DOUBLE PRECISION array, dimension (N)
BETA
BETA is DOUBLE PRECISION array, dimension (N) On exit, ALPHA and BETA contain the generalized singular value pairs of A and B; ALPHA(1:K) = 1, BETA(1:K) = 0, and if M-K-L >= 0, ALPHA(K+1:K+L) = C, BETA(K+1:K+L) = S, or if M-K-L < 0, ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 BETA(K+1:M) =S, BETA(M+1:K+L) =1 and ALPHA(K+L+1:N) = 0 BETA(K+L+1:N) = 0
U
U is COMPLEX*16 array, dimension (LDU,M) If JOBU = 'U', U contains the M-by-M unitary matrix U. If JOBU = 'N', U is not referenced.
LDU
LDU is INTEGER The leading dimension of the array U. LDU >= max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.
V
V is COMPLEX*16 array, dimension (LDV,P) If JOBV = 'V', V contains the P-by-P unitary matrix V. If JOBV = 'N', V is not referenced.
LDV
LDV is INTEGER The leading dimension of the array V. LDV >= max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.
Q
Q is COMPLEX*16 array, dimension (LDQ,N) If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q. If JOBQ = 'N', Q is not referenced.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (2*N)
IWORK
IWORK is INTEGER array, dimension (N) On exit, IWORK stores the sorting information. More precisely, the following loop will sort ALPHA for I = K+1, min(M,K+L) swap ALPHA(I) and ALPHA(IWORK(I)) endfor such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, the Jacobi-type procedure failed to converge. For further details, see subroutine ZTGSJA.
Internal Parameters:
TOLA DOUBLE PRECISION TOLB DOUBLE PRECISION TOLA and TOLB are the thresholds to determine the effective rank of (A**H,B**H)**H. Generally, they are set to TOLA = MAX(M,N)*norm(A)*MACHEPS, TOLB = MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and TOLB may affect the size of backward errors of the decomposition.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Huan Ren, Computer Science Division,
University of California at Berkeley, USA
Further Details:
ZGGSVD3 replaces the deprecated subroutine ZGGSVD.
Definition at line 350 of file zggsvd3.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |