SRC/zggev3.f(3) | Library Functions Manual | SRC/zggev3.f(3) |
NAME
SRC/zggev3.f
SYNOPSIS
Functions/Subroutines
subroutine zggev3 (jobvl, jobvr, n, a, lda, b, ldb, alpha,
beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
ZGGEV3 computes the eigenvalues and, optionally, the left and/or right
eigenvectors for GE matrices (blocked algorithm)
Function/Subroutine Documentation
subroutine zggev3 (character jobvl, character jobvr, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) alpha, complex*16, dimension( * ) beta, complex*16, dimension( ldvl, * ) vl, integer ldvl, complex*16, dimension( ldvr, * ) vr, integer ldvr, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)
ZGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)
Purpose:
ZGGEV3 computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right generalized eigenvector v(j) corresponding to the generalized eigenvalue lambda(j) of (A,B) satisfies A * v(j) = lambda(j) * B * v(j). The left generalized eigenvector u(j) corresponding to the generalized eigenvalues lambda(j) of (A,B) satisfies u(j)**H * A = lambda(j) * u(j)**H * B where u(j)**H is the conjugate-transpose of u(j).
Parameters
JOBVL
JOBVL is CHARACTER*1 = 'N': do not compute the left generalized eigenvectors; = 'V': compute the left generalized eigenvectors.
JOBVR
JOBVR is CHARACTER*1 = 'N': do not compute the right generalized eigenvectors; = 'V': compute the right generalized eigenvectors.
N
N is INTEGER The order of the matrices A, B, VL, and VR. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA, N) On entry, the matrix A in the pair (A,B). On exit, A has been overwritten.
LDA
LDA is INTEGER The leading dimension of A. LDA >= max(1,N).
B
B is COMPLEX*16 array, dimension (LDB, N) On entry, the matrix B in the pair (A,B). On exit, B has been overwritten.
LDB
LDB is INTEGER The leading dimension of B. LDB >= max(1,N).
ALPHA
ALPHA is COMPLEX*16 array, dimension (N)
BETA
BETA is COMPLEX*16 array, dimension (N) On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized eigenvalues. Note: the quotients ALPHA(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHA will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B).
VL
VL is COMPLEX*16 array, dimension (LDVL,N) If JOBVL = 'V', the left generalized eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) = 1. Not referenced if JOBVL = 'N'.
LDVL
LDVL is INTEGER The leading dimension of the matrix VL. LDVL >= 1, and if JOBVL = 'V', LDVL >= N.
VR
VR is COMPLEX*16 array, dimension (LDVR,N) If JOBVR = 'V', the right generalized eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) = 1. Not referenced if JOBVR = 'N'.
LDVR
LDVR is INTEGER The leading dimension of the matrix VR. LDVR >= 1, and if JOBVR = 'V', LDVR >= N.
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (8*N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. =1,...,N: The QZ iteration failed. No eigenvectors have been calculated, but ALPHA(j) and BETA(j) should be correct for j=INFO+1,...,N. > N: =N+1: other then QZ iteration failed in ZHGEQZ, =N+2: error return from ZTGEVC.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 214 of file zggev3.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |