SRC/DEPRECATED/zgeqpf.f(3) | Library Functions Manual | SRC/DEPRECATED/zgeqpf.f(3) |
NAME
SRC/DEPRECATED/zgeqpf.f
SYNOPSIS
Functions/Subroutines
subroutine zgeqpf (m, n, a, lda, jpvt, tau, work, rwork,
info)
ZGEQPF
Function/Subroutine Documentation
subroutine zgeqpf (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)
ZGEQPF
Purpose:
This routine is deprecated and has been replaced by routine ZGEQP3. ZGEQPF computes a QR factorization with column pivoting of a complex M-by-N matrix A: A*P = Q*R.
Parameters
M
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. N >= 0
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper triangular matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
JPVT
JPVT is INTEGER array, dimension (N) On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the i-th column of A is a free column. On exit, if JPVT(i) = k, then the i-th column of A*P was the k-th column of A.
TAU
TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
WORK
WORK is COMPLEX*16 array, dimension (N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (2*N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n) Each H(i) has the form H = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). The matrix P is represented in jpvt as follows: If jpvt(j) = i then the jth column of P is the ith canonical unit vector. Partial column norm updating strategy modified by Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia. -- April 2011 -- For more details see LAPACK Working Note 176.
Definition at line 147 of file zgeqpf.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |