SRC/zgeev.f(3) | Library Functions Manual | SRC/zgeev.f(3) |
NAME
SRC/zgeev.f
SYNOPSIS
Functions/Subroutines
subroutine zgeev (jobvl, jobvr, n, a, lda, w, vl, ldvl, vr,
ldvr, work, lwork, rwork, info)
ZGEEV computes the eigenvalues and, optionally, the left and/or right
eigenvectors for GE matrices
Function/Subroutine Documentation
subroutine zgeev (character jobvl, character jobvr, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) w, complex*16, dimension( ldvl, * ) vl, integer ldvl, complex*16, dimension( ldvr, * ) vr, integer ldvr, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)
ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices
Purpose:
ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies u(j)**H * A = lambda(j) * u(j)**H where u(j)**H denotes the conjugate transpose of u(j). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
Parameters
JOBVL
JOBVL is CHARACTER*1 = 'N': left eigenvectors of A are not computed; = 'V': left eigenvectors of are computed.
JOBVR
JOBVR is CHARACTER*1 = 'N': right eigenvectors of A are not computed; = 'V': right eigenvectors of A are computed.
N
N is INTEGER The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A. On exit, A has been overwritten.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
W
W is COMPLEX*16 array, dimension (N) W contains the computed eigenvalues.
VL
VL is COMPLEX*16 array, dimension (LDVL,N) If JOBVL = 'V', the left eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. If JOBVL = 'N', VL is not referenced. u(j) = VL(:,j), the j-th column of VL.
LDVL
LDVL is INTEGER The leading dimension of the array VL. LDVL >= 1; if JOBVL = 'V', LDVL >= N.
VR
VR is COMPLEX*16 array, dimension (LDVR,N) If JOBVR = 'V', the right eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. If JOBVR = 'N', VR is not referenced. v(j) = VR(:,j), the j-th column of VR.
LDVR
LDVR is INTEGER The leading dimension of the array VR. LDVR >= 1; if JOBVR = 'V', LDVR >= N.
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,2*N). For good performance, LWORK must generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (2*N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements i+1:N of W contain eigenvalues which have converged.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 178 of file zgeev.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |