unmlq(3) | Library Functions Manual | unmlq(3) |
NAME
unmlq - {un,or}mlq: multiply by Q from gelqf
SYNOPSIS
Functions
subroutine cunmlq (side, trans, m, n, k, a, lda, tau, c,
ldc, work, lwork, info)
CUNMLQ subroutine dormlq (side, trans, m, n, k, a, lda, tau, c,
ldc, work, lwork, info)
DORMLQ subroutine sormlq (side, trans, m, n, k, a, lda, tau, c,
ldc, work, lwork, info)
SORMLQ subroutine zunmlq (side, trans, m, n, k, a, lda, tau, c,
ldc, work, lwork, info)
ZUNMLQ
Detailed Description
Function Documentation
subroutine cunmlq (character side, character trans, integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer lwork, integer info)
CUNMLQ
Purpose:
CUNMLQ overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix defined as the product of k elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters
SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
A
A is COMPLEX array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGELQF in the first k rows of its array argument A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K).
TAU
TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGELQF.
C
C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 166 of file cunmlq.f.
subroutine dormlq (character side, character trans, integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer lwork, integer info)
DORMLQ
Purpose:
DORMLQ overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(k) . . . H(2) H(1) as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters
SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGELQF in the first k rows of its array argument A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K).
TAU
TAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGELQF.
C
C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 165 of file dormlq.f.
subroutine sormlq (character side, character trans, integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer lwork, integer info)
SORMLQ
Purpose:
SORMLQ overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(k) . . . H(2) H(1) as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters
SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
A
A is REAL array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by SGELQF in the first k rows of its array argument A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K).
TAU
TAU is REAL array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGELQF.
C
C is REAL array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 166 of file sormlq.f.
subroutine zunmlq (character side, character trans, integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer lwork, integer info)
ZUNMLQ
Purpose:
ZUNMLQ overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix defined as the product of k elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H as returned by ZGELQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters
SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
A
A is COMPLEX*16 array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by ZGELQF in the first k rows of its array argument A.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K).
TAU
TAU is COMPLEX*16 array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZGELQF.
C
C is COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 165 of file zunmlq.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |