unm2r(3) | Library Functions Manual | unm2r(3) |
NAME
unm2r - {un,or}m2r: multiply by Q from geqrf, level 2
SYNOPSIS
Functions
subroutine cunm2r (side, trans, m, n, k, a, lda, tau, c,
ldc, work, info)
CUNM2R multiplies a general matrix by the unitary matrix from a QR
factorization determined by cgeqrf (unblocked algorithm). subroutine
dorm2r (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
DORM2R multiplies a general matrix by the orthogonal matrix from a QR
factorization determined by sgeqrf (unblocked algorithm). subroutine
sorm2r (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
SORM2R multiplies a general matrix by the orthogonal matrix from a QR
factorization determined by sgeqrf (unblocked algorithm). subroutine
zunm2r (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
ZUNM2R multiplies a general matrix by the unitary matrix from a QR
factorization determined by cgeqrf (unblocked algorithm).
Detailed Description
Function Documentation
subroutine cunm2r (character side, character trans, integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer info)
CUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf (unblocked algorithm).
Purpose:
!> !> CUNM2R overwrites the general complex m-by-n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by CGEQRF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
A
!> A is COMPLEX array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> CGEQRF in the first k columns of its array argument A. !> A is modified by the routine but restored on exit. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
TAU
!> TAU is COMPLEX array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by CGEQRF. !>
C
!> C is COMPLEX array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is COMPLEX array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 157 of file cunm2r.f.
subroutine dorm2r (character side, character trans, integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer info)
DORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sgeqrf (unblocked algorithm).
Purpose:
!> !> DORM2R overwrites the general real m by n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**T* C if SIDE = 'L' and TRANS = 'T', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**T if SIDE = 'R' and TRANS = 'T', !> !> where Q is a real orthogonal matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left !> = 'R': apply Q or Q**T from the Right !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'T': apply Q**T (Transpose) !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
A
!> A is DOUBLE PRECISION array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> DGEQRF in the first k columns of its array argument A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
TAU
!> TAU is DOUBLE PRECISION array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by DGEQRF. !>
C
!> C is DOUBLE PRECISION array, dimension (LDC,N) !> On entry, the m by n matrix C. !> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is DOUBLE PRECISION array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 156 of file dorm2r.f.
subroutine sorm2r (character side, character trans, integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer info)
SORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sgeqrf (unblocked algorithm).
Purpose:
!> !> SORM2R overwrites the general real m by n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**T* C if SIDE = 'L' and TRANS = 'T', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**T if SIDE = 'R' and TRANS = 'T', !> !> where Q is a real orthogonal matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by SGEQRF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left !> = 'R': apply Q or Q**T from the Right !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'T': apply Q**T (Transpose) !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
A
!> A is REAL array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> SGEQRF in the first k columns of its array argument A. !> A is modified by the routine but restored on exit. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
TAU
!> TAU is REAL array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by SGEQRF. !>
C
!> C is REAL array, dimension (LDC,N) !> On entry, the m by n matrix C. !> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is REAL array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 157 of file sorm2r.f.
subroutine zunm2r (character side, character trans, integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer info)
ZUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf (unblocked algorithm).
Purpose:
!> !> ZUNM2R overwrites the general complex m-by-n matrix C with !> !> Q * C if SIDE = 'L' and TRANS = 'N', or !> !> Q**H* C if SIDE = 'L' and TRANS = 'C', or !> !> C * Q if SIDE = 'R' and TRANS = 'N', or !> !> C * Q**H if SIDE = 'R' and TRANS = 'C', !> !> where Q is a complex unitary matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by ZGEQRF. Q is of order m if SIDE = 'L' and of order n !> if SIDE = 'R'. !>
Parameters
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**H from the Left !> = 'R': apply Q or Q**H from the Right !>
TRANS
!> TRANS is CHARACTER*1 !> = 'N': apply Q (No transpose) !> = 'C': apply Q**H (Conjugate transpose) !>
M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> ZGEQRF in the first k columns of its array argument A. !> A is modified by the routine but restored on exit. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
TAU
!> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by ZGEQRF. !>
C
!> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the m-by-n matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
WORK
!> WORK is COMPLEX*16 array, dimension !> (N) if SIDE = 'L', !> (M) if SIDE = 'R' !>
INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 157 of file zunm2r.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |