ungrq(3) | Library Functions Manual | ungrq(3) |
NAME
ungrq - {un,or}grq: generate explicit Q from gerqf
SYNOPSIS
Functions
subroutine cungrq (m, n, k, a, lda, tau, work, lwork, info)
CUNGRQ subroutine dorgrq (m, n, k, a, lda, tau, work, lwork,
info)
DORGRQ subroutine sorgrq (m, n, k, a, lda, tau, work, lwork,
info)
SORGRQ subroutine zungrq (m, n, k, a, lda, tau, work, lwork,
info)
ZUNGRQ
Detailed Description
Function Documentation
subroutine cungrq (integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer info)
CUNGRQ
Purpose:
CUNGRQ generates an M-by-N complex matrix Q with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1)**H H(2)**H . . . H(k)**H as returned by CGERQF.
Parameters
M is INTEGER The number of rows of the matrix Q. M >= 0.
N
N is INTEGER The number of columns of the matrix Q. N >= M.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0.
A
A is COMPLEX array, dimension (LDA,N) On entry, the (m-k+i)-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGERQF in the last k rows of its array argument A. On exit, the M-by-N matrix Q.
LDA
LDA is INTEGER The first dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGERQF.
WORK
WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file cungrq.f.
subroutine dorgrq (integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer lwork, integer info)
DORGRQ
Purpose:
DORGRQ generates an M-by-N real matrix Q with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1) H(2) . . . H(k) as returned by DGERQF.
Parameters
M is INTEGER The number of rows of the matrix Q. M >= 0.
N
N is INTEGER The number of columns of the matrix Q. N >= M.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the (m-k+i)-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGERQF in the last k rows of its array argument A. On exit, the M-by-N matrix Q.
LDA
LDA is INTEGER The first dimension of the array A. LDA >= max(1,M).
TAU
TAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGERQF.
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file dorgrq.f.
subroutine sorgrq (integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)
SORGRQ
Purpose:
SORGRQ generates an M-by-N real matrix Q with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1) H(2) . . . H(k) as returned by SGERQF.
Parameters
M is INTEGER The number of rows of the matrix Q. M >= 0.
N
N is INTEGER The number of columns of the matrix Q. N >= M.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0.
A
A is REAL array, dimension (LDA,N) On entry, the (m-k+i)-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by SGERQF in the last k rows of its array argument A. On exit, the M-by-N matrix Q.
LDA
LDA is INTEGER The first dimension of the array A. LDA >= max(1,M).
TAU
TAU is REAL array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGERQF.
WORK
WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file sorgrq.f.
subroutine zungrq (integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, integer info)
ZUNGRQ
Purpose:
ZUNGRQ generates an M-by-N complex matrix Q with orthonormal rows, which is defined as the last M rows of a product of K elementary reflectors of order N Q = H(1)**H H(2)**H . . . H(k)**H as returned by ZGERQF.
Parameters
M is INTEGER The number of rows of the matrix Q. M >= 0.
N
N is INTEGER The number of columns of the matrix Q. N >= M.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) On entry, the (m-k+i)-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by ZGERQF in the last k rows of its array argument A. On exit, the M-by-N matrix Q.
LDA
LDA is INTEGER The first dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX*16 array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZGERQF.
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 127 of file zungrq.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |