trtri(3) Library Functions Manual trtri(3)

trtri - trtri: triangular inverse


subroutine ctrtri (uplo, diag, n, a, lda, info)
CTRTRI subroutine dtrtri (uplo, diag, n, a, lda, info)
DTRTRI subroutine strtri (uplo, diag, n, a, lda, info)
STRTRI subroutine ztrtri (uplo, diag, n, a, lda, info)
ZTRTRI

CTRTRI

Purpose:

!>
!> CTRTRI computes the inverse of a complex upper or lower triangular
!> matrix A.
!>
!> This is the Level 3 BLAS version of the algorithm.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  A is upper triangular;
!>          = 'L':  A is lower triangular.
!> 

DIAG

!>          DIAG is CHARACTER*1
!>          = 'N':  A is non-unit triangular;
!>          = 'U':  A is unit triangular.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the triangular matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of the array A contains
!>          the upper triangular matrix, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of the array A contains
!>          the lower triangular matrix, and the strictly upper
!>          triangular part of A is not referenced.  If DIAG = 'U', the
!>          diagonal elements of A are also not referenced and are
!>          assumed to be 1.
!>          On exit, the (triangular) inverse of the original matrix, in
!>          the same storage format.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
!>               matrix is singular and its inverse can not be computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file ctrtri.f.

DTRTRI

Purpose:

!>
!> DTRTRI computes the inverse of a real upper or lower triangular
!> matrix A.
!>
!> This is the Level 3 BLAS version of the algorithm.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  A is upper triangular;
!>          = 'L':  A is lower triangular.
!> 

DIAG

!>          DIAG is CHARACTER*1
!>          = 'N':  A is non-unit triangular;
!>          = 'U':  A is unit triangular.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

A

!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the triangular matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of the array A contains
!>          the upper triangular matrix, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of the array A contains
!>          the lower triangular matrix, and the strictly upper
!>          triangular part of A is not referenced.  If DIAG = 'U', the
!>          diagonal elements of A are also not referenced and are
!>          assumed to be 1.
!>          On exit, the (triangular) inverse of the original matrix, in
!>          the same storage format.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
!>               matrix is singular and its inverse can not be computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file dtrtri.f.

STRTRI

Purpose:

!>
!> STRTRI computes the inverse of a real upper or lower triangular
!> matrix A.
!>
!> This is the Level 3 BLAS version of the algorithm.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  A is upper triangular;
!>          = 'L':  A is lower triangular.
!> 

DIAG

!>          DIAG is CHARACTER*1
!>          = 'N':  A is non-unit triangular;
!>          = 'U':  A is unit triangular.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          On entry, the triangular matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of the array A contains
!>          the upper triangular matrix, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of the array A contains
!>          the lower triangular matrix, and the strictly upper
!>          triangular part of A is not referenced.  If DIAG = 'U', the
!>          diagonal elements of A are also not referenced and are
!>          assumed to be 1.
!>          On exit, the (triangular) inverse of the original matrix, in
!>          the same storage format.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
!>               matrix is singular and its inverse can not be computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file strtri.f.

ZTRTRI

Purpose:

!>
!> ZTRTRI computes the inverse of a complex upper or lower triangular
!> matrix A.
!>
!> This is the Level 3 BLAS version of the algorithm.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  A is upper triangular;
!>          = 'L':  A is lower triangular.
!> 

DIAG

!>          DIAG is CHARACTER*1
!>          = 'N':  A is non-unit triangular;
!>          = 'U':  A is unit triangular.
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the triangular matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of the array A contains
!>          the upper triangular matrix, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of the array A contains
!>          the lower triangular matrix, and the strictly upper
!>          triangular part of A is not referenced.  If DIAG = 'U', the
!>          diagonal elements of A are also not referenced and are
!>          assumed to be 1.
!>          On exit, the (triangular) inverse of the original matrix, in
!>          the same storage format.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
!>               matrix is singular and its inverse can not be computed.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file ztrtri.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK