trrfs(3) | Library Functions Manual | trrfs(3) |
NAME
trrfs - trrfs: triangular iterative refinement
SYNOPSIS
Functions
subroutine ctrrfs (uplo, trans, diag, n, nrhs, a, lda, b,
ldb, x, ldx, ferr, berr, work, rwork, info)
CTRRFS subroutine dtrrfs (uplo, trans, diag, n, nrhs, a, lda, b,
ldb, x, ldx, ferr, berr, work, iwork, info)
DTRRFS subroutine strrfs (uplo, trans, diag, n, nrhs, a, lda, b,
ldb, x, ldx, ferr, berr, work, iwork, info)
STRRFS subroutine ztrrfs (uplo, trans, diag, n, nrhs, a, lda, b,
ldb, x, ldx, ferr, berr, work, rwork, info)
ZTRRFS
Detailed Description
Function Documentation
subroutine ctrrfs (character uplo, character trans, character diag, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)
CTRRFS
Purpose:
CTRRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular coefficient matrix. The solution matrix X must be computed by CTRTRS or some other means before entering this routine. CTRRFS does not do iterative refinement because doing so cannot improve the backward error.
Parameters
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)
DIAG
DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
N
N is INTEGER The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is COMPLEX array, dimension (LDA,N) The triangular matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is COMPLEX array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX array, dimension (LDX,NRHS) The solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX array, dimension (2*N)
RWORK
RWORK is REAL array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 180 of file ctrrfs.f.
subroutine dtrrfs (character uplo, character trans, character diag, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)
DTRRFS
Purpose:
DTRRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular coefficient matrix. The solution matrix X must be computed by DTRTRS or some other means before entering this routine. DTRRFS does not do iterative refinement because doing so cannot improve the backward error.
Parameters
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG
DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
N
N is INTEGER The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N) The triangular matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS) The solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is DOUBLE PRECISION array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 180 of file dtrrfs.f.
subroutine strrfs (character uplo, character trans, character diag, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)
STRRFS
Purpose:
STRRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular coefficient matrix. The solution matrix X must be computed by STRTRS or some other means before entering this routine. STRRFS does not do iterative refinement because doing so cannot improve the backward error.
Parameters
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG
DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
N
N is INTEGER The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is REAL array, dimension (LDA,N) The triangular matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is REAL array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is REAL array, dimension (LDX,NRHS) The solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is REAL array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 180 of file strrfs.f.
subroutine ztrrfs (character uplo, character trans, character diag, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)
ZTRRFS
Purpose:
ZTRRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular coefficient matrix. The solution matrix X must be computed by ZTRTRS or some other means before entering this routine. ZTRRFS does not do iterative refinement because doing so cannot improve the backward error.
Parameters
UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.
TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)
DIAG
DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.
N
N is INTEGER The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N) The triangular matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX*16 array, dimension (LDX,NRHS) The solution matrix X.
LDX
LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX*16 array, dimension (2*N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 180 of file ztrrfs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |