tprfb(3) Library Functions Manual tprfb(3)

tprfb - tprfb: applies Q (like larfb)


subroutine ctprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
CTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix, which is composed of two blocks. subroutine dtprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
DTPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks. subroutine stprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
STPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks. subroutine ztprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
ZTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix, which is composed of two blocks.

CTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix, which is composed of two blocks.

Purpose:

 CTPRFB applies a complex 'triangular-pentagonal' block reflector H or its
 conjugate transpose H**H to a complex matrix C, which is composed of two
 blocks A and B, either from the left or right.

Parameters

SIDE
          SIDE is CHARACTER*1
          = 'L': apply H or H**H from the Left
          = 'R': apply H or H**H from the Right

TRANS

          TRANS is CHARACTER*1
          = 'N': apply H (No transpose)
          = 'C': apply H**H (Conjugate transpose)

DIRECT

          DIRECT is CHARACTER*1
          Indicates how H is formed from a product of elementary
          reflectors
          = 'F': H = H(1) H(2) . . . H(k) (Forward)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV

          STOREV is CHARACTER*1
          Indicates how the vectors which define the elementary
          reflectors are stored:
          = 'C': Columns
          = 'R': Rows

M

          M is INTEGER
          The number of rows of the matrix B.
          M >= 0.

N

          N is INTEGER
          The number of columns of the matrix B.
          N >= 0.

K

          K is INTEGER
          The order of the matrix T, i.e. the number of elementary
          reflectors whose product defines the block reflector.
          K >= 0.

L

          L is INTEGER
          The order of the trapezoidal part of V.
          K >= L >= 0.  See Further Details.

V

          V is COMPLEX array, dimension
                                (LDV,K) if STOREV = 'C'
                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
          The pentagonal matrix V, which contains the elementary reflectors
          H(1), H(2), ..., H(K).  See Further Details.

LDV

          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
          if STOREV = 'R', LDV >= K.

T

          T is COMPLEX array, dimension (LDT,K)
          The triangular K-by-K matrix T in the representation of the
          block reflector.

LDT

          LDT is INTEGER
          The leading dimension of the array T.
          LDT >= K.

A

          A is COMPLEX array, dimension
          (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
          On entry, the K-by-N or M-by-K matrix A.
          On exit, A is overwritten by the corresponding block of
          H*C or H**H*C or C*H or C*H**H.  See Further Details.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDA >= max(1,K);
          If SIDE = 'R', LDA >= max(1,M).

B

          B is COMPLEX array, dimension (LDB,N)
          On entry, the M-by-N matrix B.
          On exit, B is overwritten by the corresponding block of
          H*C or H**H*C or C*H or C*H**H.  See Further Details.

LDB

          LDB is INTEGER
          The leading dimension of the array B.
          LDB >= max(1,M).

WORK

          WORK is COMPLEX array, dimension
          (LDWORK,N) if SIDE = 'L',
          (LDWORK,K) if SIDE = 'R'.

LDWORK

          LDWORK is INTEGER
          The leading dimension of the array WORK.
          If SIDE = 'L', LDWORK >= K;
          if SIDE = 'R', LDWORK >= M.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix C is a composite matrix formed from blocks A and B.
  The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
  and if SIDE = 'L', A is of size K-by-N.
  If SIDE = 'R' and DIRECT = 'F', C = [A B].
  If SIDE = 'L' and DIRECT = 'F', C = [A]
                                      [B].
  If SIDE = 'R' and DIRECT = 'B', C = [B A].
  If SIDE = 'L' and DIRECT = 'B', C = [B]
                                      [A].
  The pentagonal matrix V is composed of a rectangular block V1 and a
  trapezoidal block V2.  The size of the trapezoidal block is determined by
  the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
  if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
  If DIRECT = 'F' and STOREV = 'C':  V = [V1]
                                         [V2]
     - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
  If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]
     - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
  If DIRECT = 'B' and STOREV = 'C':  V = [V2]
                                         [V1]
     - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
  If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]
     - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
  If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
  If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
  If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
  If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

Definition at line 249 of file ctprfb.f.

DTPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks.

Purpose:

 DTPRFB applies a real 'triangular-pentagonal' block reflector H or its
 transpose H**T to a real matrix C, which is composed of two
 blocks A and B, either from the left or right.

Parameters

SIDE
          SIDE is CHARACTER*1
          = 'L': apply H or H**T from the Left
          = 'R': apply H or H**T from the Right

TRANS

          TRANS is CHARACTER*1
          = 'N': apply H (No transpose)
          = 'T': apply H**T (Transpose)

DIRECT

          DIRECT is CHARACTER*1
          Indicates how H is formed from a product of elementary
          reflectors
          = 'F': H = H(1) H(2) . . . H(k) (Forward)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV

          STOREV is CHARACTER*1
          Indicates how the vectors which define the elementary
          reflectors are stored:
          = 'C': Columns
          = 'R': Rows

M

          M is INTEGER
          The number of rows of the matrix B.
          M >= 0.

N

          N is INTEGER
          The number of columns of the matrix B.
          N >= 0.

K

          K is INTEGER
          The order of the matrix T, i.e. the number of elementary
          reflectors whose product defines the block reflector.
          K >= 0.

L

          L is INTEGER
          The order of the trapezoidal part of V.
          K >= L >= 0.  See Further Details.

V

          V is DOUBLE PRECISION array, dimension
                                (LDV,K) if STOREV = 'C'
                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
          The pentagonal matrix V, which contains the elementary reflectors
          H(1), H(2), ..., H(K).  See Further Details.

LDV

          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
          if STOREV = 'R', LDV >= K.

T

          T is DOUBLE PRECISION array, dimension (LDT,K)
          The triangular K-by-K matrix T in the representation of the
          block reflector.

LDT

          LDT is INTEGER
          The leading dimension of the array T.
          LDT >= K.

A

          A is DOUBLE PRECISION array, dimension
          (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
          On entry, the K-by-N or M-by-K matrix A.
          On exit, A is overwritten by the corresponding block of
          H*C or H**T*C or C*H or C*H**T.  See Further Details.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDA >= max(1,K);
          If SIDE = 'R', LDA >= max(1,M).

B

          B is DOUBLE PRECISION array, dimension (LDB,N)
          On entry, the M-by-N matrix B.
          On exit, B is overwritten by the corresponding block of
          H*C or H**T*C or C*H or C*H**T.  See Further Details.

LDB

          LDB is INTEGER
          The leading dimension of the array B.
          LDB >= max(1,M).

WORK

          WORK is DOUBLE PRECISION array, dimension
          (LDWORK,N) if SIDE = 'L',
          (LDWORK,K) if SIDE = 'R'.

LDWORK

          LDWORK is INTEGER
          The leading dimension of the array WORK.
          If SIDE = 'L', LDWORK >= K;
          if SIDE = 'R', LDWORK >= M.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix C is a composite matrix formed from blocks A and B.
  The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
  and if SIDE = 'L', A is of size K-by-N.
  If SIDE = 'R' and DIRECT = 'F', C = [A B].
  If SIDE = 'L' and DIRECT = 'F', C = [A]
                                      [B].
  If SIDE = 'R' and DIRECT = 'B', C = [B A].
  If SIDE = 'L' and DIRECT = 'B', C = [B]
                                      [A].
  The pentagonal matrix V is composed of a rectangular block V1 and a
  trapezoidal block V2.  The size of the trapezoidal block is determined by
  the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
  if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
  If DIRECT = 'F' and STOREV = 'C':  V = [V1]
                                         [V2]
     - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
  If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]
     - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
  If DIRECT = 'B' and STOREV = 'C':  V = [V2]
                                         [V1]
     - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
  If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]
     - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
  If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
  If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
  If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
  If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

Definition at line 249 of file dtprfb.f.

STPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks.

Purpose:

 STPRFB applies a real 'triangular-pentagonal' block reflector H or its
 transpose H**T to a real matrix C, which is composed of two
 blocks A and B, either from the left or right.

Parameters

SIDE
          SIDE is CHARACTER*1
          = 'L': apply H or H**T from the Left
          = 'R': apply H or H**T from the Right

TRANS

          TRANS is CHARACTER*1
          = 'N': apply H (No transpose)
          = 'T': apply H**T (Transpose)

DIRECT

          DIRECT is CHARACTER*1
          Indicates how H is formed from a product of elementary
          reflectors
          = 'F': H = H(1) H(2) . . . H(k) (Forward)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV

          STOREV is CHARACTER*1
          Indicates how the vectors which define the elementary
          reflectors are stored:
          = 'C': Columns
          = 'R': Rows

M

          M is INTEGER
          The number of rows of the matrix B.
          M >= 0.

N

          N is INTEGER
          The number of columns of the matrix B.
          N >= 0.

K

          K is INTEGER
          The order of the matrix T, i.e. the number of elementary
          reflectors whose product defines the block reflector.
          K >= 0.

L

          L is INTEGER
          The order of the trapezoidal part of V.
          K >= L >= 0.  See Further Details.

V

          V is REAL array, dimension
                                (LDV,K) if STOREV = 'C'
                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
          The pentagonal matrix V, which contains the elementary reflectors
          H(1), H(2), ..., H(K).  See Further Details.

LDV

          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
          if STOREV = 'R', LDV >= K.

T

          T is REAL array, dimension (LDT,K)
          The triangular K-by-K matrix T in the representation of the
          block reflector.

LDT

          LDT is INTEGER
          The leading dimension of the array T.
          LDT >= K.

A

          A is REAL array, dimension
          (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
          On entry, the K-by-N or M-by-K matrix A.
          On exit, A is overwritten by the corresponding block of
          H*C or H**T*C or C*H or C*H**T.  See Further Details.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDA >= max(1,K);
          If SIDE = 'R', LDA >= max(1,M).

B

          B is REAL array, dimension (LDB,N)
          On entry, the M-by-N matrix B.
          On exit, B is overwritten by the corresponding block of
          H*C or H**T*C or C*H or C*H**T.  See Further Details.

LDB

          LDB is INTEGER
          The leading dimension of the array B.
          LDB >= max(1,M).

WORK

          WORK is REAL array, dimension
          (LDWORK,N) if SIDE = 'L',
          (LDWORK,K) if SIDE = 'R'.

LDWORK

          LDWORK is INTEGER
          The leading dimension of the array WORK.
          If SIDE = 'L', LDWORK >= K;
          if SIDE = 'R', LDWORK >= M.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix C is a composite matrix formed from blocks A and B.
  The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
  and if SIDE = 'L', A is of size K-by-N.
  If SIDE = 'R' and DIRECT = 'F', C = [A B].
  If SIDE = 'L' and DIRECT = 'F', C = [A]
                                      [B].
  If SIDE = 'R' and DIRECT = 'B', C = [B A].
  If SIDE = 'L' and DIRECT = 'B', C = [B]
                                      [A].
  The pentagonal matrix V is composed of a rectangular block V1 and a
  trapezoidal block V2.  The size of the trapezoidal block is determined by
  the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
  if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
  If DIRECT = 'F' and STOREV = 'C':  V = [V1]
                                         [V2]
     - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
  If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]
     - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
  If DIRECT = 'B' and STOREV = 'C':  V = [V2]
                                         [V1]
     - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
  If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]
     - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
  If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
  If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
  If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
  If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

Definition at line 249 of file stprfb.f.

ZTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix, which is composed of two blocks.

Purpose:

 ZTPRFB applies a complex 'triangular-pentagonal' block reflector H or its
 conjugate transpose H**H to a complex matrix C, which is composed of two
 blocks A and B, either from the left or right.

Parameters

SIDE
          SIDE is CHARACTER*1
          = 'L': apply H or H**H from the Left
          = 'R': apply H or H**H from the Right

TRANS

          TRANS is CHARACTER*1
          = 'N': apply H (No transpose)
          = 'C': apply H**H (Conjugate transpose)

DIRECT

          DIRECT is CHARACTER*1
          Indicates how H is formed from a product of elementary
          reflectors
          = 'F': H = H(1) H(2) . . . H(k) (Forward)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV

          STOREV is CHARACTER*1
          Indicates how the vectors which define the elementary
          reflectors are stored:
          = 'C': Columns
          = 'R': Rows

M

          M is INTEGER
          The number of rows of the matrix B.
          M >= 0.

N

          N is INTEGER
          The number of columns of the matrix B.
          N >= 0.

K

          K is INTEGER
          The order of the matrix T, i.e. the number of elementary
          reflectors whose product defines the block reflector.
          K >= 0.

L

          L is INTEGER
          The order of the trapezoidal part of V.
          K >= L >= 0.  See Further Details.

V

          V is COMPLEX*16 array, dimension
                                (LDV,K) if STOREV = 'C'
                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
          The pentagonal matrix V, which contains the elementary reflectors
          H(1), H(2), ..., H(K).  See Further Details.

LDV

          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
          if STOREV = 'R', LDV >= K.

T

          T is COMPLEX*16 array, dimension (LDT,K)
          The triangular K-by-K matrix T in the representation of the
          block reflector.

LDT

          LDT is INTEGER
          The leading dimension of the array T.
          LDT >= K.

A

          A is COMPLEX*16 array, dimension
          (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
          On entry, the K-by-N or M-by-K matrix A.
          On exit, A is overwritten by the corresponding block of
          H*C or H**H*C or C*H or C*H**H.  See Further Details.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDA >= max(1,K);
          If SIDE = 'R', LDA >= max(1,M).

B

          B is COMPLEX*16 array, dimension (LDB,N)
          On entry, the M-by-N matrix B.
          On exit, B is overwritten by the corresponding block of
          H*C or H**H*C or C*H or C*H**H.  See Further Details.

LDB

          LDB is INTEGER
          The leading dimension of the array B.
          LDB >= max(1,M).

WORK

          WORK is COMPLEX*16 array, dimension
          (LDWORK,N) if SIDE = 'L',
          (LDWORK,K) if SIDE = 'R'.

LDWORK

          LDWORK is INTEGER
          The leading dimension of the array WORK.
          If SIDE = 'L', LDWORK >= K;
          if SIDE = 'R', LDWORK >= M.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The matrix C is a composite matrix formed from blocks A and B.
  The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
  and if SIDE = 'L', A is of size K-by-N.
  If SIDE = 'R' and DIRECT = 'F', C = [A B].
  If SIDE = 'L' and DIRECT = 'F', C = [A]
                                      [B].
  If SIDE = 'R' and DIRECT = 'B', C = [B A].
  If SIDE = 'L' and DIRECT = 'B', C = [B]
                                      [A].
  The pentagonal matrix V is composed of a rectangular block V1 and a
  trapezoidal block V2.  The size of the trapezoidal block is determined by
  the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
  if L=0, there is no trapezoidal block, thus V = V1 is rectangular.
  If DIRECT = 'F' and STOREV = 'C':  V = [V1]
                                         [V2]
     - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)
  If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]
     - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)
  If DIRECT = 'B' and STOREV = 'C':  V = [V2]
                                         [V1]
     - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)
  If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]
     - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)
  If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.
  If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.
  If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.
  If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

Definition at line 249 of file ztprfb.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK