tpmqrt(3) Library Functions Manual tpmqrt(3)

tpmqrt - tpmqrt: applies Q


subroutine ctpmqrt (side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
CTPMQRT subroutine dtpmqrt (side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
DTPMQRT subroutine stpmqrt (side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
STPMQRT subroutine ztpmqrt (side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
ZTPMQRT

CTPMQRT

Purpose:

!>
!> CTPMQRT applies a complex orthogonal matrix Q obtained from a
!>  complex block reflector H to a general
!> complex matrix C, which consists of two blocks A and B.
!> 

Parameters

SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**H from the Left;
!>          = 'R': apply Q or Q**H from the Right.
!> 

TRANS

!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'C':  Conjugate transpose, apply Q**H.
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix B. M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B. N >= 0.
!> 

K

!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!> 

L

!>          L is INTEGER
!>          The order of the trapezoidal part of V.
!>          K >= L >= 0.  See Further Details.
!> 

NB

!>          NB is INTEGER
!>          The block size used for the storage of T.  K >= NB >= 1.
!>          This must be the same value of NB used to generate T
!>          in CTPQRT.
!> 

V

!>          V is COMPLEX array, dimension (LDV,K)
!>          The i-th column must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          CTPQRT in B.  See Further Details.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If SIDE = 'L', LDV >= max(1,M);
!>          if SIDE = 'R', LDV >= max(1,N).
!> 

T

!>          T is COMPLEX array, dimension (LDT,K)
!>          The upper triangular factors of the block reflectors
!>          as returned by CTPQRT, stored as a NB-by-K matrix.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= NB.
!> 

A

!>          A is COMPLEX array, dimension
!>          (LDA,N) if SIDE = 'L' or
!>          (LDA,K) if SIDE = 'R'
!>          On entry, the K-by-N or M-by-K matrix A.
!>          On exit, A is overwritten by the corresponding block of
!>          Q*C or Q**H*C or C*Q or C*Q**H.  See Further Details.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If SIDE = 'L', LDC >= max(1,K);
!>          If SIDE = 'R', LDC >= max(1,M).
!> 

B

!>          B is COMPLEX array, dimension (LDB,N)
!>          On entry, the M-by-N matrix B.
!>          On exit, B is overwritten by the corresponding block of
!>          Q*C or Q**H*C or C*Q or C*Q**H.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.
!>          LDB >= max(1,M).
!> 

WORK

!>          WORK is COMPLEX array. The dimension of WORK is
!>           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The columns of the pentagonal matrix V contain the elementary reflectors
!>  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
!>  trapezoidal block V2:
!>
!>        V = [V1]
!>            [V2].
!>
!>  The size of the trapezoidal block V2 is determined by the parameter L,
!>  where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
!>  rows of a K-by-K upper triangular matrix.  If L=K, V2 is upper triangular;
!>  if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
!>
!>  If SIDE = 'L':  C = [A]  where A is K-by-N,  B is M-by-N and V is M-by-K.
!>                      [B]
!>
!>  If SIDE = 'R':  C = [A B]  where A is M-by-K, B is M-by-N and V is N-by-K.
!>
!>  The complex orthogonal matrix Q is formed from V and T.
!>
!>  If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
!>
!>  If TRANS='C' and SIDE='L', C is on exit replaced with Q**H * C.
!>
!>  If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
!>
!>  If TRANS='C' and SIDE='R', C is on exit replaced with C * Q**H.
!> 

Definition at line 214 of file ctpmqrt.f.

DTPMQRT

Purpose:

!>
!> DTPMQRT applies a real orthogonal matrix Q obtained from a
!>  real block reflector H to a general
!> real matrix C, which consists of two blocks A and B.
!> 

Parameters

SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**T from the Left;
!>          = 'R': apply Q or Q**T from the Right.
!> 

TRANS

!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'T':  Transpose, apply Q**T.
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix B. M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B. N >= 0.
!> 

K

!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!> 

L

!>          L is INTEGER
!>          The order of the trapezoidal part of V.
!>          K >= L >= 0.  See Further Details.
!> 

NB

!>          NB is INTEGER
!>          The block size used for the storage of T.  K >= NB >= 1.
!>          This must be the same value of NB used to generate T
!>          in CTPQRT.
!> 

V

!>          V is DOUBLE PRECISION array, dimension (LDV,K)
!>          The i-th column must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          CTPQRT in B.  See Further Details.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If SIDE = 'L', LDV >= max(1,M);
!>          if SIDE = 'R', LDV >= max(1,N).
!> 

T

!>          T is DOUBLE PRECISION array, dimension (LDT,K)
!>          The upper triangular factors of the block reflectors
!>          as returned by CTPQRT, stored as a NB-by-K matrix.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= NB.
!> 

A

!>          A is DOUBLE PRECISION array, dimension
!>          (LDA,N) if SIDE = 'L' or
!>          (LDA,K) if SIDE = 'R'
!>          On entry, the K-by-N or M-by-K matrix A.
!>          On exit, A is overwritten by the corresponding block of
!>          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If SIDE = 'L', LDC >= max(1,K);
!>          If SIDE = 'R', LDC >= max(1,M).
!> 

B

!>          B is DOUBLE PRECISION array, dimension (LDB,N)
!>          On entry, the M-by-N matrix B.
!>          On exit, B is overwritten by the corresponding block of
!>          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.
!>          LDB >= max(1,M).
!> 

WORK

!>          WORK is DOUBLE PRECISION array. The dimension of WORK is
!>           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The columns of the pentagonal matrix V contain the elementary reflectors
!>  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
!>  trapezoidal block V2:
!>
!>        V = [V1]
!>            [V2].
!>
!>  The size of the trapezoidal block V2 is determined by the parameter L,
!>  where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
!>  rows of a K-by-K upper triangular matrix.  If L=K, V2 is upper triangular;
!>  if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
!>
!>  If SIDE = 'L':  C = [A]  where A is K-by-N,  B is M-by-N and V is M-by-K.
!>                      [B]
!>
!>  If SIDE = 'R':  C = [A B]  where A is M-by-K, B is M-by-N and V is N-by-K.
!>
!>  The real orthogonal matrix Q is formed from V and T.
!>
!>  If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
!>
!>  If TRANS='T' and SIDE='L', C is on exit replaced with Q**T * C.
!>
!>  If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
!>
!>  If TRANS='T' and SIDE='R', C is on exit replaced with C * Q**T.
!> 

Definition at line 214 of file dtpmqrt.f.

STPMQRT

Purpose:

!>
!> STPMQRT applies a real orthogonal matrix Q obtained from a
!>  real block reflector H to a general
!> real matrix C, which consists of two blocks A and B.
!> 

Parameters

SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q^T from the Left;
!>          = 'R': apply Q or Q^T from the Right.
!> 

TRANS

!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'T':  Transpose, apply Q^T.
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix B. M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B. N >= 0.
!> 

K

!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!> 

L

!>          L is INTEGER
!>          The order of the trapezoidal part of V.
!>          K >= L >= 0.  See Further Details.
!> 

NB

!>          NB is INTEGER
!>          The block size used for the storage of T.  K >= NB >= 1.
!>          This must be the same value of NB used to generate T
!>          in CTPQRT.
!> 

V

!>          V is REAL array, dimension (LDV,K)
!>          The i-th column must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          CTPQRT in B.  See Further Details.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If SIDE = 'L', LDV >= max(1,M);
!>          if SIDE = 'R', LDV >= max(1,N).
!> 

T

!>          T is REAL array, dimension (LDT,K)
!>          The upper triangular factors of the block reflectors
!>          as returned by CTPQRT, stored as a NB-by-K matrix.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= NB.
!> 

A

!>          A is REAL array, dimension
!>          (LDA,N) if SIDE = 'L' or
!>          (LDA,K) if SIDE = 'R'
!>          On entry, the K-by-N or M-by-K matrix A.
!>          On exit, A is overwritten by the corresponding block of
!>          Q*C or Q^T*C or C*Q or C*Q^T.  See Further Details.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If SIDE = 'L', LDC >= max(1,K);
!>          If SIDE = 'R', LDC >= max(1,M).
!> 

B

!>          B is REAL array, dimension (LDB,N)
!>          On entry, the M-by-N matrix B.
!>          On exit, B is overwritten by the corresponding block of
!>          Q*C or Q^T*C or C*Q or C*Q^T.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.
!>          LDB >= max(1,M).
!> 

WORK

!>          WORK is REAL array. The dimension of WORK is
!>           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The columns of the pentagonal matrix V contain the elementary reflectors
!>  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
!>  trapezoidal block V2:
!>
!>        V = [V1]
!>            [V2].
!>
!>  The size of the trapezoidal block V2 is determined by the parameter L,
!>  where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
!>  rows of a K-by-K upper triangular matrix.  If L=K, V2 is upper triangular;
!>  if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
!>
!>  If SIDE = 'L':  C = [A]  where A is K-by-N,  B is M-by-N and V is M-by-K.
!>                      [B]
!>
!>  If SIDE = 'R':  C = [A B]  where A is M-by-K, B is M-by-N and V is N-by-K.
!>
!>  The real orthogonal matrix Q is formed from V and T.
!>
!>  If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
!>
!>  If TRANS='T' and SIDE='L', C is on exit replaced with Q^T * C.
!>
!>  If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
!>
!>  If TRANS='T' and SIDE='R', C is on exit replaced with C * Q^T.
!> 

Definition at line 214 of file stpmqrt.f.

ZTPMQRT

Purpose:

!>
!> ZTPMQRT applies a complex orthogonal matrix Q obtained from a
!>  complex block reflector H to a general
!> complex matrix C, which consists of two blocks A and B.
!> 

Parameters

SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**H from the Left;
!>          = 'R': apply Q or Q**H from the Right.
!> 

TRANS

!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'C':  Conjugate transpose, apply Q**H.
!> 

M

!>          M is INTEGER
!>          The number of rows of the matrix B. M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix B. N >= 0.
!> 

K

!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!> 

L

!>          L is INTEGER
!>          The order of the trapezoidal part of V.
!>          K >= L >= 0.  See Further Details.
!> 

NB

!>          NB is INTEGER
!>          The block size used for the storage of T.  K >= NB >= 1.
!>          This must be the same value of NB used to generate T
!>          in CTPQRT.
!> 

V

!>          V is COMPLEX*16 array, dimension (LDV,K)
!>          The i-th column must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          CTPQRT in B.  See Further Details.
!> 

LDV

!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If SIDE = 'L', LDV >= max(1,M);
!>          if SIDE = 'R', LDV >= max(1,N).
!> 

T

!>          T is COMPLEX*16 array, dimension (LDT,K)
!>          The upper triangular factors of the block reflectors
!>          as returned by CTPQRT, stored as a NB-by-K matrix.
!> 

LDT

!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= NB.
!> 

A

!>          A is COMPLEX*16 array, dimension
!>          (LDA,N) if SIDE = 'L' or
!>          (LDA,K) if SIDE = 'R'
!>          On entry, the K-by-N or M-by-K matrix A.
!>          On exit, A is overwritten by the corresponding block of
!>          Q*C or Q**H*C or C*Q or C*Q**H.  See Further Details.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If SIDE = 'L', LDC >= max(1,K);
!>          If SIDE = 'R', LDC >= max(1,M).
!> 

B

!>          B is COMPLEX*16 array, dimension (LDB,N)
!>          On entry, the M-by-N matrix B.
!>          On exit, B is overwritten by the corresponding block of
!>          Q*C or Q**H*C or C*Q or C*Q**H.  See Further Details.
!> 

LDB

!>          LDB is INTEGER
!>          The leading dimension of the array B.
!>          LDB >= max(1,M).
!> 

WORK

!>          WORK is COMPLEX*16 array. The dimension of WORK is
!>           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

!>
!>  The columns of the pentagonal matrix V contain the elementary reflectors
!>  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
!>  trapezoidal block V2:
!>
!>        V = [V1]
!>            [V2].
!>
!>  The size of the trapezoidal block V2 is determined by the parameter L,
!>  where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
!>  rows of a K-by-K upper triangular matrix.  If L=K, V2 is upper triangular;
!>  if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
!>
!>  If SIDE = 'L':  C = [A]  where A is K-by-N,  B is M-by-N and V is M-by-K.
!>                      [B]
!>
!>  If SIDE = 'R':  C = [A B]  where A is M-by-K, B is M-by-N and V is N-by-K.
!>
!>  The complex orthogonal matrix Q is formed from V and T.
!>
!>  If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
!>
!>  If TRANS='C' and SIDE='L', C is on exit replaced with Q**H * C.
!>
!>  If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
!>
!>  If TRANS='C' and SIDE='R', C is on exit replaced with C * Q**H.
!> 

Definition at line 214 of file ztpmqrt.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK