tgsja(3) Library Functions Manual tgsja(3)

tgsja - tgsja: generalized SVD of trapezoidal matrices, step in ggsvd3


subroutine ctgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
CTGSJA subroutine dtgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
DTGSJA subroutine stgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
STGSJA subroutine ztgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
ZTGSJA

CTGSJA

Purpose:

 CTGSJA computes the generalized singular value decomposition (GSVD)
 of two complex upper triangular (or trapezoidal) matrices A and B.
 On entry, it is assumed that matrices A and B have the following
 forms, which may be obtained by the preprocessing subroutine CGGSVP
 from a general M-by-N matrix A and P-by-N matrix B:
              N-K-L  K    L
    A =    K ( 0    A12  A13 ) if M-K-L >= 0;
           L ( 0     0   A23 )
       M-K-L ( 0     0    0  )
            N-K-L  K    L
    A =  K ( 0    A12  A13 ) if M-K-L < 0;
       M-K ( 0     0   A23 )
            N-K-L  K    L
    B =  L ( 0     0   B13 )
       P-L ( 0     0    0  )
 where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 otherwise A23 is (M-K)-by-L upper trapezoidal.
 On exit,
        U**H *A*Q = D1*( 0 R ),    V**H *B*Q = D2*( 0 R ),
 where U, V and Q are unitary matrices.
 R is a nonsingular upper triangular matrix, and D1
 and D2 are ``diagonal'' matrices, which are of the following
 structures:
 If M-K-L >= 0,
                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )
                    K  L
        D2 = L   ( 0  S )
             P-L ( 0  0 )
                N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 ) K
             L (  0    0   R22 ) L
 where
   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.
   R is stored in A(1:K+L,N-K-L+1:N) on exit.
 If M-K-L < 0,
                K M-K K+L-M
     D1 =   K ( I  0    0   )
          M-K ( 0  C    0   )
                  K M-K K+L-M
     D2 =   M-K ( 0  S    0   )
          K+L-M ( 0  0    I   )
            P-L ( 0  0    0   )
                N-K-L  K   M-K  K+L-M
 ( 0 R ) =    K ( 0    R11  R12  R13  )
           M-K ( 0     0   R22  R23  )
         K+L-M ( 0     0    0   R33  )
 where
 C = diag( ALPHA(K+1), ... , ALPHA(M) ),
 S = diag( BETA(K+1),  ... , BETA(M) ),
 C**2 + S**2 = I.
 R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
     (  0  R22 R23 )
 in B(M-K+1:L,N+M-K-L+1:N) on exit.
 The computation of the unitary transformation matrices U, V or Q
 is optional.  These matrices may either be formed explicitly, or they
 may be postmultiplied into input matrices U1, V1, or Q1.

Parameters

JOBU
          JOBU is CHARACTER*1
          = 'U':  U must contain a unitary matrix U1 on entry, and
                  the product U1*U is returned;
          = 'I':  U is initialized to the unit matrix, and the
                  unitary matrix U is returned;
          = 'N':  U is not computed.

JOBV

          JOBV is CHARACTER*1
          = 'V':  V must contain a unitary matrix V1 on entry, and
                  the product V1*V is returned;
          = 'I':  V is initialized to the unit matrix, and the
                  unitary matrix V is returned;
          = 'N':  V is not computed.

JOBQ

          JOBQ is CHARACTER*1
          = 'Q':  Q must contain a unitary matrix Q1 on entry, and
                  the product Q1*Q is returned;
          = 'I':  Q is initialized to the unit matrix, and the
                  unitary matrix Q is returned;
          = 'N':  Q is not computed.

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

P

          P is INTEGER
          The number of rows of the matrix B.  P >= 0.

N

          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.

K

          K is INTEGER

L

          L is INTEGER
          K and L specify the subblocks in the input matrices A and B:
          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N)
          of A and B, whose GSVD is going to be computed by CTGSJA.
          See Further Details.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
          matrix R or part of R.  See Purpose for details.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).

B

          B is COMPLEX array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
          a part of R.  See Purpose for details.

LDB

          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).

TOLA

          TOLA is REAL

TOLB

          TOLB is REAL
          TOLA and TOLB are the convergence criteria for the Jacobi-
          Kogbetliantz iteration procedure. Generally, they are the
          same as used in the preprocessing step, say
              TOLA = MAX(M,N)*norm(A)*MACHEPS,
              TOLB = MAX(P,N)*norm(B)*MACHEPS.

ALPHA

          ALPHA is REAL array, dimension (N)

BETA

          BETA is REAL array, dimension (N)
          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = diag(C),
            BETA(K+1:K+L)  = diag(S),
          or if M-K-L < 0,
            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
          Furthermore, if K+L < N,
            ALPHA(K+L+1:N) = 0
            BETA(K+L+1:N)  = 0.

U

          U is COMPLEX array, dimension (LDU,M)
          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
          the unitary matrix returned by CGGSVP).
          On exit,
          if JOBU = 'I', U contains the unitary matrix U;
          if JOBU = 'U', U contains the product U1*U.
          If JOBU = 'N', U is not referenced.

LDU

          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.

V

          V is COMPLEX array, dimension (LDV,P)
          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
          the unitary matrix returned by CGGSVP).
          On exit,
          if JOBV = 'I', V contains the unitary matrix V;
          if JOBV = 'V', V contains the product V1*V.
          If JOBV = 'N', V is not referenced.

LDV

          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.

Q

          Q is COMPLEX array, dimension (LDQ,N)
          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
          the unitary matrix returned by CGGSVP).
          On exit,
          if JOBQ = 'I', Q contains the unitary matrix Q;
          if JOBQ = 'Q', Q contains the product Q1*Q.
          If JOBQ = 'N', Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK

          WORK is COMPLEX array, dimension (2*N)

NCYCLE

          NCYCLE is INTEGER
          The number of cycles required for convergence.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1:  the procedure does not converge after MAXIT cycles.

Internal Parameters:

  MAXIT   INTEGER
          MAXIT specifies the total loops that the iterative procedure
          may take. If after MAXIT cycles, the routine fails to
          converge, we return INFO = 1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  CTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
  matrix B13 to the form:
           U1**H *A13*Q1 = C1*R1; V1**H *B13*Q1 = S1*R1,
  where U1, V1 and Q1 are unitary matrix.
  C1 and S1 are diagonal matrices satisfying
                C1**2 + S1**2 = I,
  and R1 is an L-by-L nonsingular upper triangular matrix.

Definition at line 376 of file ctgsja.f.

DTGSJA

Purpose:

 DTGSJA computes the generalized singular value decomposition (GSVD)
 of two real upper triangular (or trapezoidal) matrices A and B.
 On entry, it is assumed that matrices A and B have the following
 forms, which may be obtained by the preprocessing subroutine DGGSVP
 from a general M-by-N matrix A and P-by-N matrix B:
              N-K-L  K    L
    A =    K ( 0    A12  A13 ) if M-K-L >= 0;
           L ( 0     0   A23 )
       M-K-L ( 0     0    0  )
            N-K-L  K    L
    A =  K ( 0    A12  A13 ) if M-K-L < 0;
       M-K ( 0     0   A23 )
            N-K-L  K    L
    B =  L ( 0     0   B13 )
       P-L ( 0     0    0  )
 where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 otherwise A23 is (M-K)-by-L upper trapezoidal.
 On exit,
        U**T *A*Q = D1*( 0 R ),    V**T *B*Q = D2*( 0 R ),
 where U, V and Q are orthogonal matrices.
 R is a nonsingular upper triangular matrix, and D1 and D2 are
 ``diagonal'' matrices, which are of the following structures:
 If M-K-L >= 0,
                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )
                   K  L
        D2 = L   ( 0  S )
             P-L ( 0  0 )
                N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 ) K
             L (  0    0   R22 ) L
 where
   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.
   R is stored in A(1:K+L,N-K-L+1:N) on exit.
 If M-K-L < 0,
                K M-K K+L-M
     D1 =   K ( I  0    0   )
          M-K ( 0  C    0   )
                  K M-K K+L-M
     D2 =   M-K ( 0  S    0   )
          K+L-M ( 0  0    I   )
            P-L ( 0  0    0   )
                N-K-L  K   M-K  K+L-M
 ( 0 R ) =    K ( 0    R11  R12  R13  )
           M-K ( 0     0   R22  R23  )
         K+L-M ( 0     0    0   R33  )
 where
 C = diag( ALPHA(K+1), ... , ALPHA(M) ),
 S = diag( BETA(K+1),  ... , BETA(M) ),
 C**2 + S**2 = I.
 R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
     (  0  R22 R23 )
 in B(M-K+1:L,N+M-K-L+1:N) on exit.
 The computation of the orthogonal transformation matrices U, V or Q
 is optional.  These matrices may either be formed explicitly, or they
 may be postmultiplied into input matrices U1, V1, or Q1.

Parameters

JOBU
          JOBU is CHARACTER*1
          = 'U':  U must contain an orthogonal matrix U1 on entry, and
                  the product U1*U is returned;
          = 'I':  U is initialized to the unit matrix, and the
                  orthogonal matrix U is returned;
          = 'N':  U is not computed.

JOBV

          JOBV is CHARACTER*1
          = 'V':  V must contain an orthogonal matrix V1 on entry, and
                  the product V1*V is returned;
          = 'I':  V is initialized to the unit matrix, and the
                  orthogonal matrix V is returned;
          = 'N':  V is not computed.

JOBQ

          JOBQ is CHARACTER*1
          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and
                  the product Q1*Q is returned;
          = 'I':  Q is initialized to the unit matrix, and the
                  orthogonal matrix Q is returned;
          = 'N':  Q is not computed.

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

P

          P is INTEGER
          The number of rows of the matrix B.  P >= 0.

N

          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.

K

          K is INTEGER

L

          L is INTEGER
          K and L specify the subblocks in the input matrices A and B:
          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
          of A and B, whose GSVD is going to be computed by DTGSJA.
          See Further Details.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
          matrix R or part of R.  See Purpose for details.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).

B

          B is DOUBLE PRECISION array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
          a part of R.  See Purpose for details.

LDB

          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).

TOLA

          TOLA is DOUBLE PRECISION

TOLB

          TOLB is DOUBLE PRECISION
          TOLA and TOLB are the convergence criteria for the Jacobi-
          Kogbetliantz iteration procedure. Generally, they are the
          same as used in the preprocessing step, say
              TOLA = max(M,N)*norm(A)*MAZHEPS,
              TOLB = max(P,N)*norm(B)*MAZHEPS.

ALPHA

          ALPHA is DOUBLE PRECISION array, dimension (N)

BETA

          BETA is DOUBLE PRECISION array, dimension (N)
          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = diag(C),
            BETA(K+1:K+L)  = diag(S),
          or if M-K-L < 0,
            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
          Furthermore, if K+L < N,
            ALPHA(K+L+1:N) = 0 and
            BETA(K+L+1:N)  = 0.

U

          U is DOUBLE PRECISION array, dimension (LDU,M)
          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
          the orthogonal matrix returned by DGGSVP).
          On exit,
          if JOBU = 'I', U contains the orthogonal matrix U;
          if JOBU = 'U', U contains the product U1*U.
          If JOBU = 'N', U is not referenced.

LDU

          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.

V

          V is DOUBLE PRECISION array, dimension (LDV,P)
          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
          the orthogonal matrix returned by DGGSVP).
          On exit,
          if JOBV = 'I', V contains the orthogonal matrix V;
          if JOBV = 'V', V contains the product V1*V.
          If JOBV = 'N', V is not referenced.

LDV

          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.

Q

          Q is DOUBLE PRECISION array, dimension (LDQ,N)
          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
          the orthogonal matrix returned by DGGSVP).
          On exit,
          if JOBQ = 'I', Q contains the orthogonal matrix Q;
          if JOBQ = 'Q', Q contains the product Q1*Q.
          If JOBQ = 'N', Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK

          WORK is DOUBLE PRECISION array, dimension (2*N)

NCYCLE

          NCYCLE is INTEGER
          The number of cycles required for convergence.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1:  the procedure does not converge after MAXIT cycles.
  Internal Parameters
  ===================
  MAXIT   INTEGER
          MAXIT specifies the total loops that the iterative procedure
          may take. If after MAXIT cycles, the routine fails to
          converge, we return INFO = 1..fi

Author
Univ. of Tennessee 
Univ. of California Berkeley 
Univ. of Colorado Denver 
NAG Ltd. 
Further Details:
  DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
  matrix B13 to the form:
           U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,
  where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose
  of Z.  C1 and S1 are diagonal matrices satisfying
                C1**2 + S1**2 = I,
  and R1 is an L-by-L nonsingular upper triangular matrix.

Definition at line 375 of file dtgsja.f.

STGSJA

Purpose:

 STGSJA computes the generalized singular value decomposition (GSVD)
 of two real upper triangular (or trapezoidal) matrices A and B.
 On entry, it is assumed that matrices A and B have the following
 forms, which may be obtained by the preprocessing subroutine SGGSVP
 from a general M-by-N matrix A and P-by-N matrix B:
              N-K-L  K    L
    A =    K ( 0    A12  A13 ) if M-K-L >= 0;
           L ( 0     0   A23 )
       M-K-L ( 0     0    0  )
            N-K-L  K    L
    A =  K ( 0    A12  A13 ) if M-K-L < 0;
       M-K ( 0     0   A23 )
            N-K-L  K    L
    B =  L ( 0     0   B13 )
       P-L ( 0     0    0  )
 where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 otherwise A23 is (M-K)-by-L upper trapezoidal.
 On exit,
        U**T *A*Q = D1*( 0 R ),    V**T *B*Q = D2*( 0 R ),
 where U, V and Q are orthogonal matrices.
 R is a nonsingular upper triangular matrix, and D1 and D2 are
 ``diagonal'' matrices, which are of the following structures:
 If M-K-L >= 0,
                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )
                   K  L
        D2 = L   ( 0  S )
             P-L ( 0  0 )
                N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 ) K
             L (  0    0   R22 ) L
 where
   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.
   R is stored in A(1:K+L,N-K-L+1:N) on exit.
 If M-K-L < 0,
                K M-K K+L-M
     D1 =   K ( I  0    0   )
          M-K ( 0  C    0   )
                  K M-K K+L-M
     D2 =   M-K ( 0  S    0   )
          K+L-M ( 0  0    I   )
            P-L ( 0  0    0   )
                N-K-L  K   M-K  K+L-M
 ( 0 R ) =    K ( 0    R11  R12  R13  )
           M-K ( 0     0   R22  R23  )
         K+L-M ( 0     0    0   R33  )
 where
 C = diag( ALPHA(K+1), ... , ALPHA(M) ),
 S = diag( BETA(K+1),  ... , BETA(M) ),
 C**2 + S**2 = I.
 R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
     (  0  R22 R23 )
 in B(M-K+1:L,N+M-K-L+1:N) on exit.
 The computation of the orthogonal transformation matrices U, V or Q
 is optional.  These matrices may either be formed explicitly, or they
 may be postmultiplied into input matrices U1, V1, or Q1.

Parameters

JOBU
          JOBU is CHARACTER*1
          = 'U':  U must contain an orthogonal matrix U1 on entry, and
                  the product U1*U is returned;
          = 'I':  U is initialized to the unit matrix, and the
                  orthogonal matrix U is returned;
          = 'N':  U is not computed.

JOBV

          JOBV is CHARACTER*1
          = 'V':  V must contain an orthogonal matrix V1 on entry, and
                  the product V1*V is returned;
          = 'I':  V is initialized to the unit matrix, and the
                  orthogonal matrix V is returned;
          = 'N':  V is not computed.

JOBQ

          JOBQ is CHARACTER*1
          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and
                  the product Q1*Q is returned;
          = 'I':  Q is initialized to the unit matrix, and the
                  orthogonal matrix Q is returned;
          = 'N':  Q is not computed.

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

P

          P is INTEGER
          The number of rows of the matrix B.  P >= 0.

N

          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.

K

          K is INTEGER

L

          L is INTEGER
          K and L specify the subblocks in the input matrices A and B:
          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
          of A and B, whose GSVD is going to be computed by STGSJA.
          See Further Details.

A

          A is REAL array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
          matrix R or part of R.  See Purpose for details.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).

B

          B is REAL array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
          a part of R.  See Purpose for details.

LDB

          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).

TOLA

          TOLA is REAL

TOLB

          TOLB is REAL
          TOLA and TOLB are the convergence criteria for the Jacobi-
          Kogbetliantz iteration procedure. Generally, they are the
          same as used in the preprocessing step, say
              TOLA = max(M,N)*norm(A)*MACHEPS,
              TOLB = max(P,N)*norm(B)*MACHEPS.

ALPHA

          ALPHA is REAL array, dimension (N)

BETA

          BETA is REAL array, dimension (N)
          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = diag(C),
            BETA(K+1:K+L)  = diag(S),
          or if M-K-L < 0,
            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
          Furthermore, if K+L < N,
            ALPHA(K+L+1:N) = 0 and
            BETA(K+L+1:N)  = 0.

U

          U is REAL array, dimension (LDU,M)
          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
          the orthogonal matrix returned by SGGSVP).
          On exit,
          if JOBU = 'I', U contains the orthogonal matrix U;
          if JOBU = 'U', U contains the product U1*U.
          If JOBU = 'N', U is not referenced.

LDU

          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.

V

          V is REAL array, dimension (LDV,P)
          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
          the orthogonal matrix returned by SGGSVP).
          On exit,
          if JOBV = 'I', V contains the orthogonal matrix V;
          if JOBV = 'V', V contains the product V1*V.
          If JOBV = 'N', V is not referenced.

LDV

          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.

Q

          Q is REAL array, dimension (LDQ,N)
          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
          the orthogonal matrix returned by SGGSVP).
          On exit,
          if JOBQ = 'I', Q contains the orthogonal matrix Q;
          if JOBQ = 'Q', Q contains the product Q1*Q.
          If JOBQ = 'N', Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK

          WORK is REAL array, dimension (2*N)

NCYCLE

          NCYCLE is INTEGER
          The number of cycles required for convergence.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1:  the procedure does not converge after MAXIT cycles.
  Internal Parameters
  ===================
  MAXIT   INTEGER
          MAXIT specifies the total loops that the iterative procedure
          may take. If after MAXIT cycles, the routine fails to
          converge, we return INFO = 1..fi

Author
Univ. of Tennessee 
Univ. of California Berkeley 
Univ. of Colorado Denver 
NAG Ltd. 
Further Details:
  STGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
  matrix B13 to the form:
           U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,
  where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose
  of Z.  C1 and S1 are diagonal matrices satisfying
                C1**2 + S1**2 = I,
  and R1 is an L-by-L nonsingular upper triangular matrix.

Definition at line 375 of file stgsja.f.

ZTGSJA

Purpose:

 ZTGSJA computes the generalized singular value decomposition (GSVD)
 of two complex upper triangular (or trapezoidal) matrices A and B.
 On entry, it is assumed that matrices A and B have the following
 forms, which may be obtained by the preprocessing subroutine ZGGSVP
 from a general M-by-N matrix A and P-by-N matrix B:
              N-K-L  K    L
    A =    K ( 0    A12  A13 ) if M-K-L >= 0;
           L ( 0     0   A23 )
       M-K-L ( 0     0    0  )
            N-K-L  K    L
    A =  K ( 0    A12  A13 ) if M-K-L < 0;
       M-K ( 0     0   A23 )
            N-K-L  K    L
    B =  L ( 0     0   B13 )
       P-L ( 0     0    0  )
 where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 otherwise A23 is (M-K)-by-L upper trapezoidal.
 On exit,
        U**H *A*Q = D1*( 0 R ),    V**H *B*Q = D2*( 0 R ),
 where U, V and Q are unitary matrices.
 R is a nonsingular upper triangular matrix, and D1
 and D2 are ``diagonal'' matrices, which are of the following
 structures:
 If M-K-L >= 0,
                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )
                    K  L
        D2 = L   ( 0  S )
             P-L ( 0  0 )
                N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 ) K
             L (  0    0   R22 ) L
 where
   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.
   R is stored in A(1:K+L,N-K-L+1:N) on exit.
 If M-K-L < 0,
                K M-K K+L-M
     D1 =   K ( I  0    0   )
          M-K ( 0  C    0   )
                  K M-K K+L-M
     D2 =   M-K ( 0  S    0   )
          K+L-M ( 0  0    I   )
            P-L ( 0  0    0   )
                N-K-L  K   M-K  K+L-M
 ( 0 R ) =    K ( 0    R11  R12  R13  )
           M-K ( 0     0   R22  R23  )
         K+L-M ( 0     0    0   R33  )
 where
 C = diag( ALPHA(K+1), ... , ALPHA(M) ),
 S = diag( BETA(K+1),  ... , BETA(M) ),
 C**2 + S**2 = I.
 R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
     (  0  R22 R23 )
 in B(M-K+1:L,N+M-K-L+1:N) on exit.
 The computation of the unitary transformation matrices U, V or Q
 is optional.  These matrices may either be formed explicitly, or they
 may be postmultiplied into input matrices U1, V1, or Q1.

Parameters

JOBU
          JOBU is CHARACTER*1
          = 'U':  U must contain a unitary matrix U1 on entry, and
                  the product U1*U is returned;
          = 'I':  U is initialized to the unit matrix, and the
                  unitary matrix U is returned;
          = 'N':  U is not computed.

JOBV

          JOBV is CHARACTER*1
          = 'V':  V must contain a unitary matrix V1 on entry, and
                  the product V1*V is returned;
          = 'I':  V is initialized to the unit matrix, and the
                  unitary matrix V is returned;
          = 'N':  V is not computed.

JOBQ

          JOBQ is CHARACTER*1
          = 'Q':  Q must contain a unitary matrix Q1 on entry, and
                  the product Q1*Q is returned;
          = 'I':  Q is initialized to the unit matrix, and the
                  unitary matrix Q is returned;
          = 'N':  Q is not computed.

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

P

          P is INTEGER
          The number of rows of the matrix B.  P >= 0.

N

          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.

K

          K is INTEGER

L

          L is INTEGER
          K and L specify the subblocks in the input matrices A and B:
          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N)
          of A and B, whose GSVD is going to be computed by ZTGSJA.
          See Further Details.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
          matrix R or part of R.  See Purpose for details.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).

B

          B is COMPLEX*16 array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
          a part of R.  See Purpose for details.

LDB

          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).

TOLA

          TOLA is DOUBLE PRECISION

TOLB

          TOLB is DOUBLE PRECISION
          TOLA and TOLB are the convergence criteria for the Jacobi-
          Kogbetliantz iteration procedure. Generally, they are the
          same as used in the preprocessing step, say
              TOLA = MAX(M,N)*norm(A)*MAZHEPS,
              TOLB = MAX(P,N)*norm(B)*MAZHEPS.

ALPHA

          ALPHA is DOUBLE PRECISION array, dimension (N)

BETA

          BETA is DOUBLE PRECISION array, dimension (N)
          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = diag(C),
            BETA(K+1:K+L)  = diag(S),
          or if M-K-L < 0,
            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
          Furthermore, if K+L < N,
            ALPHA(K+L+1:N) = 0 and
            BETA(K+L+1:N)  = 0.

U

          U is COMPLEX*16 array, dimension (LDU,M)
          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
          the unitary matrix returned by ZGGSVP).
          On exit,
          if JOBU = 'I', U contains the unitary matrix U;
          if JOBU = 'U', U contains the product U1*U.
          If JOBU = 'N', U is not referenced.

LDU

          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.

V

          V is COMPLEX*16 array, dimension (LDV,P)
          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
          the unitary matrix returned by ZGGSVP).
          On exit,
          if JOBV = 'I', V contains the unitary matrix V;
          if JOBV = 'V', V contains the product V1*V.
          If JOBV = 'N', V is not referenced.

LDV

          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.

Q

          Q is COMPLEX*16 array, dimension (LDQ,N)
          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
          the unitary matrix returned by ZGGSVP).
          On exit,
          if JOBQ = 'I', Q contains the unitary matrix Q;
          if JOBQ = 'Q', Q contains the product Q1*Q.
          If JOBQ = 'N', Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK

          WORK is COMPLEX*16 array, dimension (2*N)

NCYCLE

          NCYCLE is INTEGER
          The number of cycles required for convergence.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1:  the procedure does not converge after MAXIT cycles.

Internal Parameters:

  MAXIT   INTEGER
          MAXIT specifies the total loops that the iterative procedure
          may take. If after MAXIT cycles, the routine fails to
          converge, we return INFO = 1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  ZTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
  matrix B13 to the form:
           U1**H *A13*Q1 = C1*R1; V1**H *B13*Q1 = S1*R1,
  where U1, V1 and Q1 are unitary matrix.
  C1 and S1 are diagonal matrices satisfying
                C1**2 + S1**2 = I,
  and R1 is an L-by-L nonsingular upper triangular matrix.

Definition at line 376 of file ztgsja.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK