potrf2(3) Library Functions Manual potrf2(3)

potrf2 - potrf2: triangular factor panel, recursive?


recursive subroutine cpotrf2 (uplo, n, a, lda, info)
CPOTRF2 recursive subroutine dpotrf2 (uplo, n, a, lda, info)
DPOTRF2 recursive subroutine spotrf2 (uplo, n, a, lda, info)
SPOTRF2 recursive subroutine zpotrf2 (uplo, n, a, lda, info)
ZPOTRF2

CPOTRF2

Purpose:

 CPOTRF2 computes the Cholesky factorization of a Hermitian
 positive definite matrix A using the recursive algorithm.
 The factorization has the form
    A = U**H * U,  if UPLO = 'U', or
    A = L  * L**H,  if UPLO = 'L',
 where U is an upper triangular matrix and L is lower triangular.
 This is the recursive version of the algorithm. It divides
 the matrix into four submatrices:
        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
    A = [ -----|----- ]  with n1 = n/2
        [  A21 | A22  ]       n2 = n-n1
 The subroutine calls itself to factor A11. Update and scale A21
 or A12, update A22 then calls itself to factor A22.

Parameters

UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**H*U or A = L*L**H.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                is not positive, and the factorization could not be
                completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 105 of file cpotrf2.f.

DPOTRF2

Purpose:

 DPOTRF2 computes the Cholesky factorization of a real symmetric
 positive definite matrix A using the recursive algorithm.
 The factorization has the form
    A = U**T * U,  if UPLO = 'U', or
    A = L  * L**T,  if UPLO = 'L',
 where U is an upper triangular matrix and L is lower triangular.
 This is the recursive version of the algorithm. It divides
 the matrix into four submatrices:
        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
    A = [ -----|----- ]  with n1 = n/2
        [  A21 | A22  ]       n2 = n-n1
 The subroutine calls itself to factor A11. Update and scale A21
 or A12, update A22 then calls itself to factor A22.

Parameters

UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**T*U or A = L*L**T.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                is not positive, and the factorization could not be
                completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 105 of file dpotrf2.f.

SPOTRF2

Purpose:

 SPOTRF2 computes the Cholesky factorization of a real symmetric
 positive definite matrix A using the recursive algorithm.
 The factorization has the form
    A = U**T * U,  if UPLO = 'U', or
    A = L  * L**T,  if UPLO = 'L',
 where U is an upper triangular matrix and L is lower triangular.
 This is the recursive version of the algorithm. It divides
 the matrix into four submatrices:
        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
    A = [ -----|----- ]  with n1 = n/2
        [  A21 | A22  ]       n2 = n-n1
 The subroutine calls itself to factor A11. Update and scale A21
 or A12, update A22 then call itself to factor A22.

Parameters

UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is REAL array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**T*U or A = L*L**T.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                is not positive, and the factorization could not be
                completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 105 of file spotrf2.f.

ZPOTRF2

Purpose:

 ZPOTRF2 computes the Cholesky factorization of a Hermitian
 positive definite matrix A using the recursive algorithm.
 The factorization has the form
    A = U**H * U,  if UPLO = 'U', or
    A = L  * L**H,  if UPLO = 'L',
 where U is an upper triangular matrix and L is lower triangular.
 This is the recursive version of the algorithm. It divides
 the matrix into four submatrices:
        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
    A = [ -----|----- ]  with n1 = n/2
        [  A21 | A22  ]       n2 = n-n1
 The subroutine calls itself to factor A11. Update and scale A21
 or A12, update A22 then call itself to factor A22.

Parameters

UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**H*U or A = L*L**H.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                is not positive, and the factorization could not be
                completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 105 of file zpotrf2.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK