potrf(3) Library Functions Manual potrf(3)

potrf - potrf: triangular factor


subroutine cpotrf (uplo, n, a, lda, info)
CPOTRF subroutine dpotrf (uplo, n, a, lda, info)
DPOTRF subroutine spotrf (uplo, n, a, lda, info)
SPOTRF subroutine zpotrf (uplo, n, a, lda, info)
ZPOTRF

CPOTRF

Purpose:

 CPOTRF computes the Cholesky factorization of a complex Hermitian
 positive definite matrix A.
 The factorization has the form
    A = U**H * U,  if UPLO = 'U', or
    A = L  * L**H,  if UPLO = 'L',
 where U is an upper triangular matrix and L is lower triangular.
 This is the block version of the algorithm, calling Level 3 BLAS.

Parameters

UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**H*U or A = L*L**H.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                is not positive, and the factorization could not be
                completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 106 of file cpotrf.f.

DPOTRF

Purpose:

 DPOTRF computes the Cholesky factorization of a real symmetric
 positive definite matrix A.
 The factorization has the form
    A = U**T * U,  if UPLO = 'U', or
    A = L  * L**T,  if UPLO = 'L',
 where U is an upper triangular matrix and L is lower triangular.
 This is the block version of the algorithm, calling Level 3 BLAS.

Parameters

UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**T*U or A = L*L**T.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                is not positive, and the factorization could not be
                completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 106 of file dpotrf.f.

SPOTRF

Purpose:

 SPOTRF computes the Cholesky factorization of a real symmetric
 positive definite matrix A.
 The factorization has the form
    A = U**T * U,  if UPLO = 'U', or
    A = L  * L**T,  if UPLO = 'L',
 where U is an upper triangular matrix and L is lower triangular.
 This is the block version of the algorithm, calling Level 3 BLAS.

Parameters

UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is REAL array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**T*U or A = L*L**T.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                is not positive, and the factorization could not be
                completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 106 of file spotrf.f.

ZPOTRF

Purpose:

 ZPOTRF computes the Cholesky factorization of a complex Hermitian
 positive definite matrix A.
 The factorization has the form
    A = U**H * U,  if UPLO = 'U', or
    A = L  * L**H,  if UPLO = 'L',
 where U is an upper triangular matrix and L is lower triangular.
 This is the block version of the algorithm, calling Level 3 BLAS.

Parameters

UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**H *U or A = L*L**H.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                is not positive, and the factorization could not be
                completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 106 of file zpotrf.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK