lartv(3) Library Functions Manual lartv(3)

lartv - lartv: apply vector of plane rotations to vectors


subroutine clartv (n, x, incx, y, incy, c, s, incc)
CLARTV applies a vector of plane rotations with real cosines and complex sines to the elements of a pair of vectors. subroutine dlartv (n, x, incx, y, incy, c, s, incc)
DLARTV applies a vector of plane rotations with real cosines and real sines to the elements of a pair of vectors. subroutine slartv (n, x, incx, y, incy, c, s, incc)
SLARTV applies a vector of plane rotations with real cosines and real sines to the elements of a pair of vectors. subroutine zlartv (n, x, incx, y, incy, c, s, incc)
ZLARTV applies a vector of plane rotations with real cosines and complex sines to the elements of a pair of vectors.

CLARTV applies a vector of plane rotations with real cosines and complex sines to the elements of a pair of vectors.

Purpose:

 CLARTV applies a vector of complex plane rotations with real cosines
 to elements of the complex vectors x and y. For i = 1,2,...,n
    ( x(i) ) := (        c(i)   s(i) ) ( x(i) )
    ( y(i) )    ( -conjg(s(i))  c(i) ) ( y(i) )

Parameters

N
          N is INTEGER
          The number of plane rotations to be applied.

X

          X is COMPLEX array, dimension (1+(N-1)*INCX)
          The vector x.

INCX

          INCX is INTEGER
          The increment between elements of X. INCX > 0.

Y

          Y is COMPLEX array, dimension (1+(N-1)*INCY)
          The vector y.

INCY

          INCY is INTEGER
          The increment between elements of Y. INCY > 0.

C

          C is REAL array, dimension (1+(N-1)*INCC)
          The cosines of the plane rotations.

S

          S is COMPLEX array, dimension (1+(N-1)*INCC)
          The sines of the plane rotations.

INCC

          INCC is INTEGER
          The increment between elements of C and S. INCC > 0.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 106 of file clartv.f.

DLARTV applies a vector of plane rotations with real cosines and real sines to the elements of a pair of vectors.

Purpose:

 DLARTV applies a vector of real plane rotations to elements of the
 real vectors x and y. For i = 1,2,...,n
    ( x(i) ) := (  c(i)  s(i) ) ( x(i) )
    ( y(i) )    ( -s(i)  c(i) ) ( y(i) )

Parameters

N
          N is INTEGER
          The number of plane rotations to be applied.

X

          X is DOUBLE PRECISION array,
                         dimension (1+(N-1)*INCX)
          The vector x.

INCX

          INCX is INTEGER
          The increment between elements of X. INCX > 0.

Y

          Y is DOUBLE PRECISION array,
                         dimension (1+(N-1)*INCY)
          The vector y.

INCY

          INCY is INTEGER
          The increment between elements of Y. INCY > 0.

C

          C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
          The cosines of the plane rotations.

S

          S is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
          The sines of the plane rotations.

INCC

          INCC is INTEGER
          The increment between elements of C and S. INCC > 0.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file dlartv.f.

SLARTV applies a vector of plane rotations with real cosines and real sines to the elements of a pair of vectors.

Purpose:

 SLARTV applies a vector of real plane rotations to elements of the
 real vectors x and y. For i = 1,2,...,n
    ( x(i) ) := (  c(i)  s(i) ) ( x(i) )
    ( y(i) )    ( -s(i)  c(i) ) ( y(i) )

Parameters

N
          N is INTEGER
          The number of plane rotations to be applied.

X

          X is REAL array,
                         dimension (1+(N-1)*INCX)
          The vector x.

INCX

          INCX is INTEGER
          The increment between elements of X. INCX > 0.

Y

          Y is REAL array,
                         dimension (1+(N-1)*INCY)
          The vector y.

INCY

          INCY is INTEGER
          The increment between elements of Y. INCY > 0.

C

          C is REAL array, dimension (1+(N-1)*INCC)
          The cosines of the plane rotations.

S

          S is REAL array, dimension (1+(N-1)*INCC)
          The sines of the plane rotations.

INCC

          INCC is INTEGER
          The increment between elements of C and S. INCC > 0.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file slartv.f.

ZLARTV applies a vector of plane rotations with real cosines and complex sines to the elements of a pair of vectors.

Purpose:

 ZLARTV applies a vector of complex plane rotations with real cosines
 to elements of the complex vectors x and y. For i = 1,2,...,n
    ( x(i) ) := (        c(i)   s(i) ) ( x(i) )
    ( y(i) )    ( -conjg(s(i))  c(i) ) ( y(i) )

Parameters

N
          N is INTEGER
          The number of plane rotations to be applied.

X

          X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
          The vector x.

INCX

          INCX is INTEGER
          The increment between elements of X. INCX > 0.

Y

          Y is COMPLEX*16 array, dimension (1+(N-1)*INCY)
          The vector y.

INCY

          INCY is INTEGER
          The increment between elements of Y. INCY > 0.

C

          C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
          The cosines of the plane rotations.

S

          S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
          The sines of the plane rotations.

INCC

          INCC is INTEGER
          The increment between elements of C and S. INCC > 0.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 106 of file zlartv.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK