lanhb(3) Library Functions Manual lanhb(3)

lanhb - lan{hb,sb}: Hermitian/symmetric matrix, banded


real function clanhb (norm, uplo, n, k, ab, ldab, work)
CLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix. real function clansb (norm, uplo, n, k, ab, ldab, work)
CLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix. double precision function dlansb (norm, uplo, n, k, ab, ldab, work)
DLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix. real function slansb (norm, uplo, n, k, ab, ldab, work)
SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix. double precision function zlanhb (norm, uplo, n, k, ab, ldab, work)
ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix. double precision function zlansb (norm, uplo, n, k, ab, ldab, work)
ZLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

CLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.

Purpose:

!>
!> CLANHB  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the element of  largest absolute value  of an
!> n by n hermitian band matrix A,  with k super-diagonals.
!> 

Returns

CLANHB
!>
!>    CLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 

Parameters

NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in CLANHB as described
!>          above.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          band matrix A is supplied.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, CLANHB is
!>          set to zero.
!> 

K

!>          K is INTEGER
!>          The number of super-diagonals or sub-diagonals of the
!>          band matrix A.  K >= 0.
!> 

AB

!>          AB is COMPLEX array, dimension (LDAB,N)
!>          The upper or lower triangle of the hermitian band matrix A,
!>          stored in the first K+1 rows of AB.  The j-th column of A is
!>          stored in the j-th column of the array AB as follows:
!>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
!>          Note that the imaginary parts of the diagonal elements need
!>          not be set and are assumed to be zero.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= K+1.
!> 

WORK

!>          WORK is REAL array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
!>          WORK is not referenced.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 130 of file clanhb.f.

CLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

Purpose:

!>
!> CLANSB  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the element of  largest absolute value  of an
!> n by n symmetric band matrix A,  with k super-diagonals.
!> 

Returns

CLANSB
!>
!>    CLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 

Parameters

NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in CLANSB as described
!>          above.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          band matrix A is supplied.
!>          = 'U':  Upper triangular part is supplied
!>          = 'L':  Lower triangular part is supplied
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, CLANSB is
!>          set to zero.
!> 

K

!>          K is INTEGER
!>          The number of super-diagonals or sub-diagonals of the
!>          band matrix A.  K >= 0.
!> 

AB

!>          AB is COMPLEX array, dimension (LDAB,N)
!>          The upper or lower triangle of the symmetric band matrix A,
!>          stored in the first K+1 rows of AB.  The j-th column of A is
!>          stored in the j-th column of the array AB as follows:
!>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= K+1.
!> 

WORK

!>          WORK is REAL array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
!>          WORK is not referenced.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 128 of file clansb.f.

DLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

Purpose:

!>
!> DLANSB  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the element of  largest absolute value  of an
!> n by n symmetric band matrix A,  with k super-diagonals.
!> 

Returns

DLANSB
!>
!>    DLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 

Parameters

NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in DLANSB as described
!>          above.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          band matrix A is supplied.
!>          = 'U':  Upper triangular part is supplied
!>          = 'L':  Lower triangular part is supplied
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, DLANSB is
!>          set to zero.
!> 

K

!>          K is INTEGER
!>          The number of super-diagonals or sub-diagonals of the
!>          band matrix A.  K >= 0.
!> 

AB

!>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
!>          The upper or lower triangle of the symmetric band matrix A,
!>          stored in the first K+1 rows of AB.  The j-th column of A is
!>          stored in the j-th column of the array AB as follows:
!>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= K+1.
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
!>          WORK is not referenced.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 127 of file dlansb.f.

SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

Purpose:

!>
!> SLANSB  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the element of  largest absolute value  of an
!> n by n symmetric band matrix A,  with k super-diagonals.
!> 

Returns

SLANSB
!>
!>    SLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 

Parameters

NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in SLANSB as described
!>          above.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          band matrix A is supplied.
!>          = 'U':  Upper triangular part is supplied
!>          = 'L':  Lower triangular part is supplied
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, SLANSB is
!>          set to zero.
!> 

K

!>          K is INTEGER
!>          The number of super-diagonals or sub-diagonals of the
!>          band matrix A.  K >= 0.
!> 

AB

!>          AB is REAL array, dimension (LDAB,N)
!>          The upper or lower triangle of the symmetric band matrix A,
!>          stored in the first K+1 rows of AB.  The j-th column of A is
!>          stored in the j-th column of the array AB as follows:
!>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= K+1.
!> 

WORK

!>          WORK is REAL array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
!>          WORK is not referenced.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 127 of file slansb.f.

ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.

Purpose:

!>
!> ZLANHB  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the element of  largest absolute value  of an
!> n by n hermitian band matrix A,  with k super-diagonals.
!> 

Returns

ZLANHB
!>
!>    ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 

Parameters

NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in ZLANHB as described
!>          above.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          band matrix A is supplied.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHB is
!>          set to zero.
!> 

K

!>          K is INTEGER
!>          The number of super-diagonals or sub-diagonals of the
!>          band matrix A.  K >= 0.
!> 

AB

!>          AB is COMPLEX*16 array, dimension (LDAB,N)
!>          The upper or lower triangle of the hermitian band matrix A,
!>          stored in the first K+1 rows of AB.  The j-th column of A is
!>          stored in the j-th column of the array AB as follows:
!>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
!>          Note that the imaginary parts of the diagonal elements need
!>          not be set and are assumed to be zero.
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= K+1.
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
!>          WORK is not referenced.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 130 of file zlanhb.f.

ZLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

Purpose:

!>
!> ZLANSB  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the element of  largest absolute value  of an
!> n by n symmetric band matrix A,  with k super-diagonals.
!> 

Returns

ZLANSB
!>
!>    ZLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 

Parameters

NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in ZLANSB as described
!>          above.
!> 

UPLO

!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          band matrix A is supplied.
!>          = 'U':  Upper triangular part is supplied
!>          = 'L':  Lower triangular part is supplied
!> 

N

!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, ZLANSB is
!>          set to zero.
!> 

K

!>          K is INTEGER
!>          The number of super-diagonals or sub-diagonals of the
!>          band matrix A.  K >= 0.
!> 

AB

!>          AB is COMPLEX*16 array, dimension (LDAB,N)
!>          The upper or lower triangle of the symmetric band matrix A,
!>          stored in the first K+1 rows of AB.  The j-th column of A is
!>          stored in the j-th column of the array AB as follows:
!>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
!> 

LDAB

!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= K+1.
!> 

WORK

!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
!>          WORK is not referenced.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 128 of file zlansb.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK