SRC/dsptri.f(3) Library Functions Manual SRC/dsptri.f(3)

SRC/dsptri.f


subroutine dsptri (uplo, n, ap, ipiv, work, info)
DSPTRI

DSPTRI

Purpose:

 DSPTRI computes the inverse of a real symmetric indefinite matrix
 A in packed storage using the factorization A = U*D*U**T or
 A = L*D*L**T computed by DSPTRF.

Parameters

UPLO
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
          On entry, the block diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by DSPTRF,
          stored as a packed triangular matrix.
          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix, stored as a packed triangular matrix. The j-th column
          of inv(A) is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
          if UPLO = 'L',
             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by DSPTRF.

WORK

          WORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file dsptri.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK