SRC/clags2.f(3) Library Functions Manual SRC/clags2.f(3)

SRC/clags2.f


subroutine clags2 (upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
CLAGS2

CLAGS2

Purpose:

!>
!> CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
!> that if ( UPPER ) then
!>
!>           U**H *A*Q = U**H *( A1 A2 )*Q = ( x  0  )
!>                             ( 0  A3 )     ( x  x  )
!> and
!>           V**H*B*Q = V**H *( B1 B2 )*Q = ( x  0  )
!>                            ( 0  B3 )     ( x  x  )
!>
!> or if ( .NOT.UPPER ) then
!>
!>           U**H *A*Q = U**H *( A1 0  )*Q = ( x  x  )
!>                             ( A2 A3 )     ( 0  x  )
!> and
!>           V**H *B*Q = V**H *( B1 0  )*Q = ( x  x  )
!>                             ( B2 B3 )     ( 0  x  )
!> where
!>
!>   U = (   CSU    SNU ), V = (  CSV    SNV ),
!>       ( -SNU**H  CSU )      ( -SNV**H CSV )
!>
!>   Q = (   CSQ    SNQ )
!>       ( -SNQ**H  CSQ )
!>
!> The rows of the transformed A and B are parallel. Moreover, if the
!> input 2-by-2 matrix A is not zero, then the transformed (1,1) entry
!> of A is not zero. If the input matrices A and B are both not zero,
!> then the transformed (2,2) element of B is not zero, except when the
!> first rows of input A and B are parallel and the second rows are
!> zero.
!> 

Parameters

UPPER
!>          UPPER is LOGICAL
!>          = .TRUE.: the input matrices A and B are upper triangular.
!>          = .FALSE.: the input matrices A and B are lower triangular.
!> 

A1

!>          A1 is REAL
!> 

A2

!>          A2 is COMPLEX
!> 

A3

!>          A3 is REAL
!>          On entry, A1, A2 and A3 are elements of the input 2-by-2
!>          upper (lower) triangular matrix A.
!> 

B1

!>          B1 is REAL
!> 

B2

!>          B2 is COMPLEX
!> 

B3

!>          B3 is REAL
!>          On entry, B1, B2 and B3 are elements of the input 2-by-2
!>          upper (lower) triangular matrix B.
!> 

CSU

!>          CSU is REAL
!> 

SNU

!>          SNU is COMPLEX
!>          The desired unitary matrix U.
!> 

CSV

!>          CSV is REAL
!> 

SNV

!>          SNV is COMPLEX
!>          The desired unitary matrix V.
!> 

CSQ

!>          CSQ is REAL
!> 

SNQ

!>          SNQ is COMPLEX
!>          The desired unitary matrix Q.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 156 of file clags2.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK