SRC/chetri_3x.f(3) Library Functions Manual SRC/chetri_3x.f(3)

SRC/chetri_3x.f


subroutine chetri_3x (uplo, n, a, lda, e, ipiv, work, nb, info)
CHETRI_3X

CHETRI_3X

Purpose:

 CHETRI_3X computes the inverse of a complex Hermitian indefinite
 matrix A using the factorization computed by CHETRF_RK or CHETRF_BK:
     A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
 where U (or L) is unit upper (or lower) triangular matrix,
 U**H (or L**H) is the conjugate of U (or L), P is a permutation
 matrix, P**T is the transpose of P, and D is Hermitian and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.
 This is the blocked version of the algorithm, calling Level 3 BLAS.

Parameters

UPLO
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are
          stored as an upper or lower triangular matrix.
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, diagonal of the block diagonal matrix D and
          factors U or L as computed by CHETRF_RK and CHETRF_BK:
            a) ONLY diagonal elements of the Hermitian block diagonal
               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
               (superdiagonal (or subdiagonal) elements of D
                should be provided on entry in array E), and
            b) If UPLO = 'U': factor U in the superdiagonal part of A.
               If UPLO = 'L': factor L in the subdiagonal part of A.
          On exit, if INFO = 0, the Hermitian inverse of the original
          matrix.
             If UPLO = 'U': the upper triangular part of the inverse
             is formed and the part of A below the diagonal is not
             referenced;
             If UPLO = 'L': the lower triangular part of the inverse
             is formed and the part of A above the diagonal is not
             referenced.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

E

          E is COMPLEX array, dimension (N)
          On entry, contains the superdiagonal (or subdiagonal)
          elements of the Hermitian block diagonal matrix D
          with 1-by-1 or 2-by-2 diagonal blocks, where
          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
          NOTE: For 1-by-1 diagonal block D(k), where
          1 <= k <= N, the element E(k) is not referenced in both
          UPLO = 'U' or UPLO = 'L' cases.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by CHETRF_RK or CHETRF_BK.

WORK

          WORK is COMPLEX array, dimension (N+NB+1,NB+3).

NB

          NB is INTEGER
          Block size.

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

  June 2017,  Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

Definition at line 158 of file chetri_3x.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK