TESTING/EIG/cbdt05.f(3) Library Functions Manual TESTING/EIG/cbdt05.f(3)

TESTING/EIG/cbdt05.f


subroutine cbdt05 (m, n, a, lda, s, ns, u, ldu, vt, ldvt, work, resid)
CBDT05

CBDT05

Purpose:

!>
!> CBDT05 reconstructs a bidiagonal matrix B from its (partial) SVD:
!>    S = U' * B * V
!> where U and V are orthogonal matrices and S is diagonal.
!>
!> The test ratio to test the singular value decomposition is
!>    RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
!> where VT = V' and EPS is the machine precision.
!> 

Parameters

M
!>          M is INTEGER
!>          The number of rows of the matrices A and U.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrices A and VT.
!> 

A

!>          A is COMPLEX array, dimension (LDA,N)
!>          The m by n matrix A.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

S

!>          S is REAL array, dimension (NS)
!>          The singular values from the (partial) SVD of B, sorted in
!>          decreasing order.
!> 

NS

!>          NS is INTEGER
!>          The number of singular values/vectors from the (partial)
!>          SVD of B.
!> 

U

!>          U is COMPLEX array, dimension (LDU,NS)
!>          The n by ns orthogonal matrix U in S = U' * B * V.
!> 

LDU

!>          LDU is INTEGER
!>          The leading dimension of the array U.  LDU >= max(1,N)
!> 

VT

!>          VT is COMPLEX array, dimension (LDVT,N)
!>          The n by ns orthogonal matrix V in S = U' * B * V.
!> 

LDVT

!>          LDVT is INTEGER
!>          The leading dimension of the array VT.
!> 

WORK

!>          WORK is COMPLEX array, dimension (M,N)
!> 

RESID

!>          RESID is REAL
!>          The test ratio:  norm(S - U' * A * V) / ( n * norm(A) * EPS )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 123 of file cbdt05.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK