.TH "TESTING/LIN/dptt05.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/LIN/dptt05.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdptt05\fP (n, nrhs, d, e, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)" .br .RI "\fBDPTT05\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dptt05 (integer n, integer nrhs, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( ldxact, * ) xact, integer ldxact, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) reslts)" .PP \fBDPTT05\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DPTT05 tests the error bounds from iterative refinement for the computed solution to a system of equations A*X = B, where A is a symmetric tridiagonal matrix of order n\&. RESLTS(1) = test of the error bound = norm(X - XACT) / ( norm(X) * FERR ) A large value is returned if this ratio is not less than one\&. RESLTS(2) = residual from the iterative refinement routine = the maximum of BERR / ( NZ*EPS + (*) ), where (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) and NZ = max\&. number of nonzeros in any row of A, plus 1 .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The number of rows of the matrices X, B, and XACT, and the order of the matrix A\&. N >= 0\&. .fi .PP .br \fINRHS\fP .PP .nf NRHS is INTEGER The number of columns of the matrices X, B, and XACT\&. NRHS >= 0\&. .fi .PP .br \fID\fP .PP .nf D is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the tridiagonal matrix A\&. .fi .PP .br \fIE\fP .PP .nf E is DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the tridiagonal matrix A\&. .fi .PP .br \fIB\fP .PP .nf B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side vectors for the system of linear equations\&. .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B\&. LDB >= max(1,N)\&. .fi .PP .br \fIX\fP .PP .nf X is DOUBLE PRECISION array, dimension (LDX,NRHS) The computed solution vectors\&. Each vector is stored as a column of the matrix X\&. .fi .PP .br \fILDX\fP .PP .nf LDX is INTEGER The leading dimension of the array X\&. LDX >= max(1,N)\&. .fi .PP .br \fIXACT\fP .PP .nf XACT is DOUBLE PRECISION array, dimension (LDX,NRHS) The exact solution vectors\&. Each vector is stored as a column of the matrix XACT\&. .fi .PP .br \fILDXACT\fP .PP .nf LDXACT is INTEGER The leading dimension of the array XACT\&. LDXACT >= max(1,N)\&. .fi .PP .br \fIFERR\fP .PP .nf FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bounds for each solution vector X\&. If XTRUE is the true solution, FERR bounds the magnitude of the largest entry in (X - XTRUE) divided by the magnitude of the largest entry in X\&. .fi .PP .br \fIBERR\fP .PP .nf BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector (i\&.e\&., the smallest relative change in any entry of A or B that makes X an exact solution)\&. .fi .PP .br \fIRESLTS\fP .PP .nf RESLTS is DOUBLE PRECISION array, dimension (2) The maximum over the NRHS solution vectors of the ratios: RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) RESLTS(2) = BERR / ( NZ*EPS + (*) ) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB148\fP of file \fBdptt05\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.