.TH "TESTING/LIN/dptt01.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/LIN/dptt01.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdptt01\fP (n, d, e, df, ef, work, resid)" .br .RI "\fBDPTT01\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dptt01 (integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( * ) df, double precision, dimension( * ) ef, double precision, dimension( * ) work, double precision resid)" .PP \fBDPTT01\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DPTT01 reconstructs a tridiagonal matrix A from its L*D*L' !> factorization and computes the residual !> norm(L*D*L' - A) / ( n * norm(A) * EPS ), !> where EPS is the machine epsilon\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the tridiagonal matrix A\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) subdiagonal elements of the tridiagonal matrix A\&. !> .fi .PP .br \fIDF\fP .PP .nf !> DF is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the factor L from the L*D*L' !> factorization of A\&. !> .fi .PP .br \fIEF\fP .PP .nf !> EF is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) subdiagonal elements of the factor L from the !> L*D*L' factorization of A\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (2*N) !> .fi .PP .br \fIRESID\fP .PP .nf !> RESID is DOUBLE PRECISION !> norm(L*D*L' - A) / (n * norm(A) * EPS) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB90\fP of file \fBdptt01\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.