SRC/dpptri.f(3) Library Functions Manual SRC/dpptri.f(3) NAME SRC/dpptri.f SYNOPSIS Functions/Subroutines subroutine dpptri (uplo, n, ap, info) DPPTRI Function/Subroutine Documentation subroutine dpptri (character uplo, integer n, double precision, dimension( * ) ap, integer info) DPPTRI Purpose: !> !> DPPTRI computes the inverse of a real symmetric positive definite !> matrix A using the Cholesky factorization A = U**T*U or A = L*L**T !> computed by DPPTRF. !> Parameters UPLO !> UPLO is CHARACTER*1 !> = 'U': Upper triangular factor is stored in AP; !> = 'L': Lower triangular factor is stored in AP. !> N !> N is INTEGER !> The order of the matrix A. N >= 0. !> AP !> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> On entry, the triangular factor U or L from the Cholesky !> factorization A = U**T*U or A = L*L**T, packed columnwise as !> a linear array. The j-th column of U or L is stored in the !> array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. !> !> On exit, the upper or lower triangle of the (symmetric) !> inverse of A, overwriting the input factor U or L. !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the (i,i) element of the factor U or L is !> zero, and the inverse could not be computed. !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 92 of file dpptri.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/dpptri.f(3)