TESTING/LIN/dpot01.f(3) Library Functions Manual TESTING/LIN/dpot01.f(3) NAME TESTING/LIN/dpot01.f SYNOPSIS Functions/Subroutines subroutine dpot01 (uplo, n, a, lda, afac, ldafac, rwork, resid) DPOT01 Function/Subroutine Documentation subroutine dpot01 (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldafac, * ) afac, integer ldafac, double precision, dimension( * ) rwork, double precision resid) DPOT01 Purpose: !> !> DPOT01 reconstructs a symmetric positive definite matrix A from !> its L*L' or U'*U factorization and computes the residual !> norm( L*L' - A ) / ( N * norm(A) * EPS ) or !> norm( U'*U - A ) / ( N * norm(A) * EPS ), !> where EPS is the machine epsilon. !> Parameters UPLO !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !> N !> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !> A !> A is DOUBLE PRECISION array, dimension (LDA,N) !> The original symmetric matrix A. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N) !> AFAC !> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N) !> On entry, the factor L or U from the L * L**T or U**T * U !> factorization of A. !> Overwritten with the reconstructed matrix, and then with !> the difference L * L**T - A (or U**T * U - A). !> LDAFAC !> LDAFAC is INTEGER !> The leading dimension of the array AFAC. LDAFAC >= max(1,N). !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (N) !> RESID !> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L * L**T - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U**T * U - A) / ( N * norm(A) * EPS ) !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 103 of file dpot01.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 TESTING/LIN/dpot01.f(3)