.TH "SRC/dpoequb.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/dpoequb.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdpoequb\fP (n, a, lda, s, scond, amax, info)" .br .RI "\fBDPOEQUB\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dpoequb (integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)" .PP \fBDPOEQUB\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DPOEQUB computes row and column scalings intended to equilibrate a !> symmetric positive definite matrix A and reduce its condition number !> (with respect to the two-norm)\&. S contains the scale factors, !> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with !> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal\&. This !> choice of S puts the condition number of B within a factor N of the !> smallest possible condition number over all possible diagonal !> scalings\&. !> !> This routine differs from DPOEQU by restricting the scaling factors !> to a power of the radix\&. Barring over- and underflow, scaling by !> these factors introduces no additional rounding errors\&. However, the !> scaled diagonal entries are no longer approximately 1 but lie !> between sqrt(radix) and 1/sqrt(radix)\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is DOUBLE PRECISION array, dimension (LDA,N) !> The N-by-N symmetric positive definite matrix whose scaling !> factors are to be computed\&. Only the diagonal elements of A !> are referenced\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIS\fP .PP .nf !> S is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, S contains the scale factors for A\&. !> .fi .PP .br \fISCOND\fP .PP .nf !> SCOND is DOUBLE PRECISION !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i)\&. If SCOND >= 0\&.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S\&. !> .fi .PP .br \fIAMAX\fP .PP .nf !> AMAX is DOUBLE PRECISION !> Absolute value of largest matrix element\&. If AMAX is very !> close to overflow or very close to underflow, the matrix !> should be scaled\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB117\fP of file \fBdpoequb\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.