.TH "TESTING/MATGEN/dlatm6.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/MATGEN/dlatm6.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdlatm6\fP (type, n, a, lda, b, x, ldx, y, ldy, alpha, beta, wx, wy, s, dif)" .br .RI "\fBDLATM6\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dlatm6 (integer type, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( lda, * ) b, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( ldy, * ) y, integer ldy, double precision alpha, double precision beta, double precision wx, double precision wy, double precision, dimension( * ) s, double precision, dimension( * ) dif)" .PP \fBDLATM6\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DLATM6 generates test matrices for the generalized eigenvalue !> problem, their corresponding right and left eigenvector matrices, !> and also reciprocal condition numbers for all eigenvalues and !> the reciprocal condition numbers of eigenvectors corresponding to !> the 1th and 5th eigenvalues\&. !> !> Test Matrices !> ============= !> !> Two kinds of test matrix pairs !> !> (A, B) = inverse(YH) * (Da, Db) * inverse(X) !> !> are used in the tests: !> !> Type 1: !> Da = 1+a 0 0 0 0 Db = 1 0 0 0 0 !> 0 2+a 0 0 0 0 1 0 0 0 !> 0 0 3+a 0 0 0 0 1 0 0 !> 0 0 0 4+a 0 0 0 0 1 0 !> 0 0 0 0 5+a , 0 0 0 0 1 , and !> !> Type 2: !> Da = 1 -1 0 0 0 Db = 1 0 0 0 0 !> 1 1 0 0 0 0 1 0 0 0 !> 0 0 1 0 0 0 0 1 0 0 !> 0 0 0 1+a 1+b 0 0 0 1 0 !> 0 0 0 -1-b 1+a , 0 0 0 0 1 \&. !> !> In both cases the same inverse(YH) and inverse(X) are used to compute !> (A, B), giving the exact eigenvectors to (A,B) as (YH, X): !> !> YH: = 1 0 -y y -y X = 1 0 -x -x x !> 0 1 -y y -y 0 1 x -x -x !> 0 0 1 0 0 0 0 1 0 0 !> 0 0 0 1 0 0 0 0 1 0 !> 0 0 0 0 1, 0 0 0 0 1 , !> !> where a, b, x and y will have all values independently of each other\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITYPE\fP .PP .nf !> TYPE is INTEGER !> Specifies the problem type (see further details)\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> Size of the matrices A and B\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is DOUBLE PRECISION array, dimension (LDA, N)\&. !> On exit A N-by-N is initialized according to TYPE\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of A and of B\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is DOUBLE PRECISION array, dimension (LDA, N)\&. !> On exit B N-by-N is initialized according to TYPE\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is DOUBLE PRECISION array, dimension (LDX, N)\&. !> On exit X is the N-by-N matrix of right eigenvectors\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of X\&. !> .fi .PP .br \fIY\fP .PP .nf !> Y is DOUBLE PRECISION array, dimension (LDY, N)\&. !> On exit Y is the N-by-N matrix of left eigenvectors\&. !> .fi .PP .br \fILDY\fP .PP .nf !> LDY is INTEGER !> The leading dimension of Y\&. !> .fi .PP .br \fIALPHA\fP .PP .nf !> ALPHA is DOUBLE PRECISION !> .fi .PP .br \fIBETA\fP .PP .nf !> BETA is DOUBLE PRECISION !> !> Weighting constants for matrix A\&. !> .fi .PP .br \fIWX\fP .PP .nf !> WX is DOUBLE PRECISION !> Constant for right eigenvector matrix\&. !> .fi .PP .br \fIWY\fP .PP .nf !> WY is DOUBLE PRECISION !> Constant for left eigenvector matrix\&. !> .fi .PP .br \fIS\fP .PP .nf !> S is DOUBLE PRECISION array, dimension (N) !> S(i) is the reciprocal condition number for eigenvalue i\&. !> .fi .PP .br \fIDIF\fP .PP .nf !> DIF is DOUBLE PRECISION array, dimension (N) !> DIF(i) is the reciprocal condition number for eigenvector i\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB174\fP of file \fBdlatm6\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.