.TH "SRC/dlarmm.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/dlarmm.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "double precision function \fBdlarmm\fP (anorm, bnorm, cnorm)" .br .RI "\fBDLARMM\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "double precision function dlarmm (double precision anorm, double precision bnorm, double precision cnorm)" .PP \fBDLARMM\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DLARMM returns a factor s in (0, 1] such that the linear updates (s * C) - A * (s * B) and (s * C) - (s * A) * B cannot overflow, where A, B, and C are matrices of conforming dimensions\&. This is an auxiliary routine so there is no argument checking\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIANORM\fP .PP .nf ANORM is DOUBLE PRECISION The infinity norm of A\&. ANORM >= 0\&. The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIBNORM\fP .PP .nf BNORM is DOUBLE PRECISION The infinity norm of B\&. BNORM >= 0\&. .fi .PP .br \fICNORM\fP .PP .nf CNORM is DOUBLE PRECISION The infinity norm of C\&. CNORM >= 0\&. .fi .PP References: C\&. C\&. Kjelgaard Mikkelsen and L\&. Karlsson, Blocked Algorithms for Robust Solution of Triangular Linear Systems\&. In: International Conference on Parallel Processing and Applied Mathematics, pages 68--78\&. Springer, 2017\&. .RE .PP .PP Definition at line \fB60\fP of file \fBdlarmm\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.