SRC/dlaqps.f(3) Library Functions Manual SRC/dlaqps.f(3) NAME SRC/dlaqps.f SYNOPSIS Functions/Subroutines subroutine dlaqps (m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf) DLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3. Function/Subroutine Documentation subroutine dlaqps (integer m, integer n, integer offset, integer nb, integer kb, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, double precision, dimension( * ) tau, double precision, dimension( * ) vn1, double precision, dimension( * ) vn2, double precision, dimension( * ) auxv, double precision, dimension( ldf, * ) f, integer ldf) DLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3. Purpose: DLAQPS computes a step of QR factorization with column pivoting of a real M-by-N matrix A by using Blas-3. It tries to factorize NB columns from A starting from the row OFFSET+1, and updates all of the matrix with Blas-3 xGEMM. In some cases, due to catastrophic cancellations, it cannot factorize NB columns. Hence, the actual number of factorized columns is returned in KB. Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. Parameters M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0 OFFSET OFFSET is INTEGER The number of rows of A that have been factorized in previous steps. NB NB is INTEGER The number of columns to factorize. KB KB is INTEGER The number of columns actually factorized. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, block A(OFFSET+1:M,1:KB) is the triangular factor obtained and block A(1:OFFSET,1:N) has been accordingly pivoted, but no factorized. The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has been updated. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). JPVT JPVT is INTEGER array, dimension (N) JPVT(I) = K <==> Column K of the full matrix A has been permuted into position I in AP. TAU TAU is DOUBLE PRECISION array, dimension (KB) The scalar factors of the elementary reflectors. VN1 VN1 is DOUBLE PRECISION array, dimension (N) The vector with the partial column norms. VN2 VN2 is DOUBLE PRECISION array, dimension (N) The vector with the exact column norms. AUXV AUXV is DOUBLE PRECISION array, dimension (NB) Auxiliary vector. F F is DOUBLE PRECISION array, dimension (LDF,NB) Matrix F**T = L*Y**T*A. LDF LDF is INTEGER The leading dimension of the array F. LDF >= max(1,N). Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia. References: LAPACK Working Note 176 Definition at line 175 of file dlaqps.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/dlaqps.f(3)