.TH "SRC/dlaein.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/dlaein.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdlaein\fP (rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb, work, eps3, smlnum, bignum, info)" .br .RI "\fBDLAEIN\fP computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dlaein (logical rightv, logical noinit, integer n, double precision, dimension( ldh, * ) h, integer ldh, double precision wr, double precision wi, double precision, dimension( * ) vr, double precision, dimension( * ) vi, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) work, double precision eps3, double precision smlnum, double precision bignum, integer info)" .PP \fBDLAEIN\fP computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DLAEIN uses inverse iteration to find a right or left eigenvector !> corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg !> matrix H\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIRIGHTV\fP .PP .nf !> RIGHTV is LOGICAL !> = \&.TRUE\&. : compute right eigenvector; !> = \&.FALSE\&.: compute left eigenvector\&. !> .fi .PP .br \fINOINIT\fP .PP .nf !> NOINIT is LOGICAL !> = \&.TRUE\&. : no initial vector supplied in (VR,VI)\&. !> = \&.FALSE\&.: initial vector supplied in (VR,VI)\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix H\&. N >= 0\&. !> .fi .PP .br \fIH\fP .PP .nf !> H is DOUBLE PRECISION array, dimension (LDH,N) !> The upper Hessenberg matrix H\&. !> .fi .PP .br \fILDH\fP .PP .nf !> LDH is INTEGER !> The leading dimension of the array H\&. LDH >= max(1,N)\&. !> .fi .PP .br \fIWR\fP .PP .nf !> WR is DOUBLE PRECISION !> .fi .PP .br \fIWI\fP .PP .nf !> WI is DOUBLE PRECISION !> The real and imaginary parts of the eigenvalue of H whose !> corresponding right or left eigenvector is to be computed\&. !> .fi .PP .br \fIVR\fP .PP .nf !> VR is DOUBLE PRECISION array, dimension (N) !> .fi .PP .br \fIVI\fP .PP .nf !> VI is DOUBLE PRECISION array, dimension (N) !> On entry, if NOINIT = \&.FALSE\&. and WI = 0\&.0, VR must contain !> a real starting vector for inverse iteration using the real !> eigenvalue WR; if NOINIT = \&.FALSE\&. and WI\&.ne\&.0\&.0, VR and VI !> must contain the real and imaginary parts of a complex !> starting vector for inverse iteration using the complex !> eigenvalue (WR,WI); otherwise VR and VI need not be set\&. !> On exit, if WI = 0\&.0 (real eigenvalue), VR contains the !> computed real eigenvector; if WI\&.ne\&.0\&.0 (complex eigenvalue), !> VR and VI contain the real and imaginary parts of the !> computed complex eigenvector\&. The eigenvector is normalized !> so that the component of largest magnitude has magnitude 1; !> here the magnitude of a complex number (x,y) is taken to be !> |x| + |y|\&. !> VI is not referenced if WI = 0\&.0\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is DOUBLE PRECISION array, dimension (LDB,N) !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= N+1\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (N) !> .fi .PP .br \fIEPS3\fP .PP .nf !> EPS3 is DOUBLE PRECISION !> A small machine-dependent value which is used to perturb !> close eigenvalues, and to replace zero pivots\&. !> .fi .PP .br \fISMLNUM\fP .PP .nf !> SMLNUM is DOUBLE PRECISION !> A machine-dependent value close to the underflow threshold\&. !> .fi .PP .br \fIBIGNUM\fP .PP .nf !> BIGNUM is DOUBLE PRECISION !> A machine-dependent value close to the overflow threshold\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> = 1: inverse iteration did not converge; VR is set to the !> last iterate, and so is VI if WI\&.ne\&.0\&.0\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB170\fP of file \fBdlaein\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.