.TH "SRC/dlaed9.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/dlaed9.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdlaed9\fP (k, kstart, kstop, n, d, q, ldq, rho, dlambda, w, s, lds, info)" .br .RI "\fBDLAED9\fP used by DSTEDC\&. Finds the roots of the secular equation and updates the eigenvectors\&. Used when the original matrix is dense\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dlaed9 (integer k, integer kstart, integer kstop, integer n, double precision, dimension( * ) d, double precision, dimension( ldq, * ) q, integer ldq, double precision rho, double precision, dimension( * ) dlambda, double precision, dimension( * ) w, double precision, dimension( lds, * ) s, integer lds, integer info)" .PP \fBDLAED9\fP used by DSTEDC\&. Finds the roots of the secular equation and updates the eigenvectors\&. Used when the original matrix is dense\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> DLAED9 finds the roots of the secular equation, as defined by the !> values in D, Z, and RHO, between KSTART and KSTOP\&. It makes the !> appropriate calls to DLAED4 and then stores the new matrix of !> eigenvectors for use in calculating the next level of Z vectors\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIK\fP .PP .nf !> K is INTEGER !> The number of terms in the rational function to be solved by !> DLAED4\&. K >= 0\&. !> .fi .PP .br \fIKSTART\fP .PP .nf !> KSTART is INTEGER !> .fi .PP .br \fIKSTOP\fP .PP .nf !> KSTOP is INTEGER !> The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP !> are to be computed\&. 1 <= KSTART <= KSTOP <= K\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of rows and columns in the Q matrix\&. !> N >= K (delation may result in N > K)\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> D(I) contains the updated eigenvalues !> for KSTART <= I <= KSTOP\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is DOUBLE PRECISION array, dimension (LDQ,N) !> .fi .PP .br \fILDQ\fP .PP .nf !> LDQ is INTEGER !> The leading dimension of the array Q\&. LDQ >= max( 1, N )\&. !> .fi .PP .br \fIRHO\fP .PP .nf !> RHO is DOUBLE PRECISION !> The value of the parameter in the rank one update equation\&. !> RHO >= 0 required\&. !> .fi .PP .br \fIDLAMBDA\fP .PP .nf !> DLAMBDA is DOUBLE PRECISION array, dimension (K) !> The first K elements of this array contain the old roots !> of the deflated updating problem\&. These are the poles !> of the secular equation\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is DOUBLE PRECISION array, dimension (K) !> The first K elements of this array contain the components !> of the deflation-adjusted updating vector\&. !> .fi .PP .br \fIS\fP .PP .nf !> S is DOUBLE PRECISION array, dimension (LDS, K) !> Will contain the eigenvectors of the repaired matrix which !> will be stored for subsequent Z vector calculation and !> multiplied by the previously accumulated eigenvectors !> to update the system\&. !> .fi .PP .br \fILDS\fP .PP .nf !> LDS is INTEGER !> The leading dimension of S\&. LDS >= max( 1, K )\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> > 0: if INFO = 1, an eigenvalue did not converge !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Jeff Rutter, Computer Science Division, University of California at Berkeley, USA .RE .PP .PP Definition at line \fB154\fP of file \fBdlaed9\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.